
www.manaraa.com

Graph Database Management Systems
Storage, Management and Query Processing

A thesis submitted in fulfilment of the requirements for
the degree of Doctor of Philosophy

Oshini Goonetilleke

School of Science

College of Science, Engineering, and Health

RMIT University

December, 2017

www.manaraa.com

Declaration

I certify that except where due acknowledgement has been made, the work is that of the author

alone; the work has not been submitted previously, in whole or in part, to qualify for any other

academic award; the content of the thesis is the result of work which has been carried out since

the official commencement date of the approved research program; and, any editorial work, paid

or unpaid, carried out by a third party is acknowledged; and, ethics procedures and guidelines

have been followed.

Oshini Goonetilleke

School of Science

RMIT University

20th December, 2017

www.manaraa.com

Acknowledgements

First, I would like to thank my supervisor, Timos Sellis, for all his advice, support and patience

throughout my PhD journey. Over the past four years while working with Timos, I have learned

many things about research and many important lessons in life. I feel privileged to have worked

under his guidance. I would also like to thank my other supervisor, Jenny Zhang, for her advice

and support during my PhD.

I had an amazing group of collaborators, each contributing and supporting me in different

ways. I would like to thank each of them: Saket Sathe, Danai Koutra, David Meibusch, Ben

Barham and Kewen Liao. Saket for his feedback and advice during the early years of my PhD

and his humorous insights; and Danai for long conversations about research problems at odd

hours in the US, and suggesting interesting directions for my work. Working with all these

collaborators was a great learning experience for me.

I spent a great summer at Oracle Labs during my internship with them. I enjoyed working

with a small team having many insightful discussions and learned different approaches to prob-

lem solving. I believe this time was truly a turning point in my PhD. I’m particularly thankful

to David Meibusch who has been a great mentor.

My PhD experience was made so much easier because of my friends scattered throughout

the world; especially Pathi for our long chats about work, life and everything else in between. I

would specially like to thank Ammi (mother) and Nangi (sister) who have missed me so much

back home during this period but have given me emotional and moral support all the way.

Thank you for always believing in me. I would also like to thank my late father who has been

the silent inspiration behind everything I do. Finally I thank my husband, Dineth, for his love,

patience and encouragement; he has been very much my biggest pillar of strength.

www.manaraa.com

Contents

Declaration ii

Acknowledgement iii

Contents iv

List of Figures x

List of Tables xiii

Abstract xv

1 Introduction 1

1.1 Graph Data Management Systems . 1

1.2 Motivation and Contributions . 2

1.2.1 Modeling large scale applications in a GDBMS 3

1.2.2 Storage and indexing issues in GDBMS 4

1.2.3 Query processing in GDBMS . 4

1.3 Publications . 6

1.4 Thesis Overview . 7

2 Background 8

2.1 Preliminaries . 8

2.2 Graph Representation . 11

2.3 Real-world Graphs and Applications . 14

2.4 Graph Data Management Systems . 16

2.4.1 Property Graph Data Model . 16

iv

www.manaraa.com

CONTENTS v

2.4.2 Options for modeling graph data . 18

2.4.2.1 Relational model with SQL queries 18

2.4.2.2 RDF model with SPARQL queries 19

2.4.2.3 Native graph model with custom query languages 20

2.4.3 Graph Database Systems . 21

2.4.3.1 Neo4j . 21

2.4.3.2 Sparksee . 23

2.4.3.3 Titan . 26

2.4.3.4 Graph database system summary 26

2.4.4 Graph processing systems . 27

2.5 Summary . 28

3 Graph Database Systems for Microblogging Analytics 29

3.1 Introduction . 30

3.2 Data Collection . 32

3.3 Data Management Frameworks . 34

3.3.1 Focused Crawlers . 34

3.3.2 Pre-processing and Information Extraction 34

3.3.3 Generic Platforms . 35

3.3.4 Application-specific Platforms . 36

3.3.5 Support for Visualization Interfaces . 37

3.3.6 Discussion: Data Model and Storage Mechanisms 37

3.4 Languages for Querying Tweets . 38

3.4.1 Generic Languages . 39

3.4.2 Query Languages for Social Networks 40

3.4.3 Information Retrieval - Tweet Search . 40

3.4.4 Discussion: Data Model and Storage for the Languages 41

3.5 Requirements of an Integrated Solution . 42

3.5.1 Focused crawler . 43

3.5.2 Pre-processor . 44

3.5.3 Data Model . 45

3.5.4 Query Language . 46

3.5.5 General Challenges in Data Management 47

3.6 Graph Database Systems for Microblogging Queries 48

www.manaraa.com

CONTENTS vi

3.6.1 Database Schema . 49

3.6.2 Graph Databases . 50

3.7 Data Ingestion and Query Processing . 51

3.7.1 Dataset and Pre-processing . 51

3.7.2 Data Ingestion . 52

3.7.2.1 Neo4j . 53

3.7.2.2 Sparksee . 54

3.7.3 Query Processing . 55

3.7.3.1 Basic Queries . 56

3.7.3.2 Advanced Queries . 57

3.7.3.3 Deriving Other Queries . 60

3.8 Discussion . 60

3.8.1 Efficiency of alternate solutions . 61

3.8.2 Overhead for aggregate operations . 62

3.8.3 Problems with the cold cache . 62

3.8.4 Processing keyword search on graphs . 62

3.9 Summary . 63

4 Evolving Dependency Graphs for Multi-versioned Codebases 64

4.1 Introduction . 65

4.1.1 Chapter Organisation . 67

4.2 Frappé background . 67

4.2.1 Architecture . 67

4.2.2 Graph Model . 68

4.2.3 Code Comprehension Queries . 70

4.3 Related Work . 72

4.3.1 Evolving Graphs . 72

4.3.2 Industry Projects . 73

4.3.3 Source code analysis and other program meta-models 74

4.3.4 Syntactic and Semantic Differencing . 74

4.4 Versioning Dependency graphs . 76

4.4.1 Potential solutions to versioning dependencies 76

4.4.1.1 Autonomous storage . 76

4.4.1.2 Delta storage . 76

www.manaraa.com

CONTENTS vii

4.4.1.3 Use of an existing program meta-model 77

4.4.1.4 Proposed unified model . 77

4.4.2 Preliminaries of the Unified model . 78

4.4.3 Queries in the Unified Model . 79

4.5 Node and Edge Resolutions . 80

4.5.1 Resolution Rules . 80

4.5.1.1 Resolutions in a single version 80

4.5.2 Versioned graph construction . 83

4.5.3 Model Improvements . 86

4.6 Evaluation . 89

4.6.1 Datasets . 89

4.6.2 Resolution Evaluation . 90

4.6.3 Discussion . 92

4.7 Queries on Versioned Graphs . 93

4.7.1 Time-point queries . 93

4.7.2 Time-interval Queries . 95

4.8 Summary . 98

5 Edge Labeling Schemes for Graph Data 99

5.1 Introduction . 100

5.1.1 Chapter Organisation . 103

5.2 Related Work . 103

5.2.1 Node arrangement . 103

5.2.2 Graph compression and Space filling curves 104

5.2.3 Graph partitioning, Community detection and Clustering 105

5.2.4 Sparksee . 106

5.3 Edge-labeling schemes . 107

5.3.1 Problem formulation . 108

5.3.2 Labeling schemes . 110

5.3.2.1 Baselines for labeling . 111

5.3.2.2 Proposed Method: GrdRandom 111

5.3.2.3 Proposed Method: FlipInOut 111

5.4 Experimental Evaluation . 116

5.4.1 Experimental Setup . 117

www.manaraa.com

CONTENTS viii

5.4.2 Speedup of Queries . 117

5.4.2.1 Friend-of-Friend (FoF) Queries 119

5.4.2.2 Shortest Path Queries . 120

5.4.2.3 Edge-Property Queries . 121

5.4.2.4 Neighborhood Queries . 121

5.4.3 Scalability . 122

5.4.4 Disk I/O Performance . 124

5.4.4.1 Varying Page Sizes . 127

5.4.4.2 Disk Storage Benefit . 128

5.4.5 Analytical Cost of Varying Depth Neighborhood Queries 128

5.4.6 Balance of Labeling . 131

5.5 Application: Streaming Graph Partitioning . 132

5.5.1 Baseline Methods and Methodology . 133

5.5.2 Results . 133

5.6 Summary . 135

6 Social-Textual Query Processing on Graph Database Systems 137

6.1 Introduction . 138

6.1.1 Chapter Organisation . 140

6.2 Related Work . 141

6.2.1 Social Graph Queries – Twitter and Facebook 141

6.2.2 Keyword search on graphs . 141

6.2.3 Orthogonal work in multiple domains 143

6.3 Problem Definition . 143

6.4 Baseline Algorithms . 145

6.4.1 Text First Algorithm . 146

6.4.2 Social First Algorithm . 146

6.4.3 Threshold Algorithm . 147

6.5 Proposed PART_TA algorithm . 150

6.5.1 Precomputation . 151

6.5.2 Query Processing algorithm . 152

6.5.3 Graph partitioning strategy . 154

6.6 Experiments . 155

6.6.1 Datasets . 155

www.manaraa.com

CONTENTS ix

6.6.2 Graph Database System . 156

6.6.3 Performance Evaluation . 157

6.6.4 Discussion . 161

6.7 Summary . 161

7 Conclusions and Future Directions 163

7.1 Summary of Contributions . 163

7.2 Future Research Directions . 165

Bibliography 167

A List of Abbreviations 189

www.manaraa.com

List of Figures

2.1 Basic Graph types. 9

2.2 An example graph . 12

2.3 Adjacency Matrix representation of the graph . 12

2.4 Adjacency List representation of the graph . 13

2.5 Incidence Matrix representation of the graph . 13

2.6 CSR representation of the graph on the left side 14

2.7 Property graph representation of academic network 17

2.8 Relational representation of an academic social network 18

2.9 High-level architecture of Neo4j. 22

2.10 Neo4j layout of a storage record of nodes and relationships. 22

2.11 Property graph in a bitmap-based representation 24

3.1 An abstraction of a Twitter data management platform 30

3.2 Elements of the survey on Twitter analytics . 32

3.3 Graph-based data model for the Twittersphere. 46

3.4 Data model of the schema with properties and multiplicity of edges. 50

3.5 Degree distribution of the follows network. 52

3.6 Import times for nodes and edges using Neo4j. 53

3.7 Import times for nodes and edges using Sparksee. 54

3.8 Co-occurrence example. 57

3.10 Neighborhood of A. 57

3.9 Query Performance of selected queries. 58

3.11 Influence of A. 59

4.1 Frappé architecture . 68

4.2 Example of a code dependency graph . 69

x

www.manaraa.com

LIST OF FIGURES xi

4.3 Example of an edge with location information . 69

4.4 Versioned graph model with lifespan attributes on nodes and edges 78

4.5 Challenges with the pre-processor . 80

4.6 Steps in constructing the versioned graph . 83

4.7 Merging the nodes and edges . 87

4.8 Alternate Similar edge representations . 87

4.9 Taking relative locations . 89

4.10 Non-resolutions for Quake and OIC datasets . 90

4.11 Non-resolutions for OIC with improved resolution strategies 91

4.12 Non-resolutions for Quake with improved resolution strategies 91

4.13 Time-point queries for OIC . 94

4.14 A function history showing modified functions . 95

4.15 Possible cases of change in function calls between two versions 96

4.16 Cypher Query and that retrieves function calls in two versions 97

5.1 An example of indexing attributed edges. 101

5.2 Illustration of different ordering strategies. 102

5.3 Bitmaps representing relationships for a graph with edges sorted by the source . 106

5.4 Graph with edges sorted by source nodes . 110

5.5 FlipInOut Algorithm: Example. 113

5.6 Swapping procedure in FlipInOut algorithm . 116

5.7 Query Performance (in ms) in real networks . 118

5.8 Query Performance (in ms) vs. number of edges in each input graph 123

5.9 Disk I/O Performance of Queries Smaller Datasets 125

5.10 Disk I/O Performance of Queries Larger Datasets 126

5.11 Varying page size for the neighborhood query . 127

5.12 Inverse correlation between observed Consecutiveness vs. page accesses. 130

5.13 Trade-off between consecutiveness and balance 131

6.1 Social network and terms used by each of the users 147

6.2 A partitioned social network with text indexes . 150

6.3 Initial Queue with k = 10, |R|={} . 153

6.4 Intermediate Global Queue with k = 10. 154

6.5 Effect of preference parameter α. 157

www.manaraa.com

LIST OF FIGURES xii

6.6 Effect of preference parameter k. 159

6.7 Percentage of partitions expanded in PART_TA with varied α. 159

6.8 Percentage of iterations traversed for AMiner. 160

www.manaraa.com

List of Tables

1.1 Structure of the thesis along with the focus, with reference to chapters 5

2.1 Table of common graph symbols used in notations 11

2.2 Comparison of features in relational, RDF and native graph stores 27

3.1 Overview of related approaches in data management frameworks. 38

3.2 Overview of approaches in systems for querying tweets. 41

3.3 Characteristics of the dataset depicting types of nodes and edges. 52

3.4 Microblogging Query Workloads . 55

4.1 Feature based comparison with alternative approaches 75

4.2 Summary of Notations in Definitions and Algorithms 79

4.3 Attributes used to resolve each NodeType apart from name and type. 81

4.4 Dataset characteristics and description . 89

5.1 Some graph related notations used in algorithms. 107

5.2 Calculation example for in- and out-consecutiveness 110

5.3 Dataset characteristics and description . 117

5.4 Percentage of average outgoing edges at depth-1 and depth-2. 122

5.5 Storage Benefit (%) compared to the Random encoding scheme. 128

5.6 Percentage of edge cuts for 4 and 8 partitions . 134

5.7 Percentage of edge cuts for the largest graphs with higher k 135

6.1 Nodes, Edges and text attributes of graphs from different domains. 138

6.2 Some notations used in definitions and algorithms. 144

6.3 Sorted and random access to ranked lists . 149

6.4 Dataset Description . 156

xiii

www.manaraa.com

LIST OF TABLES xiv

6.5 Parameter Variations and default values . 156

www.manaraa.com

Abstract

The proliferation of graph data, generated from diverse sources, have given rise to many re-

search efforts concerning graph analysis. Interactions in social networks, publication networks,

protein networks, software code dependencies and transportation systems are all examples of

graph-structured data originating from a variety of application domains and demonstrating

different characteristics. In recent years, graph database management systems (GDBMS) have

been introduced for the management and analysis of graph data. Motivated by the growing

number of real-life applications making use of graph database systems, this thesis focuses on

the effectiveness and efficiency aspects of such systems. Specifically, we study the following

topics relevant to graph database systems: (i) modeling large scale applications in GDBMS;

(ii) storage and indexing issues in GDBMS, and (iii) efficient query processing in GDBMS.

In this thesis, we adopt two different application scenarios to examine how graph database

systems can model complex features and perform relevant queries on each of them. Motivated

by the popular application of social network analytics, we selected Twitter, a microblogging

platform, to conduct our detailed analysis. Addressing limitations of existing models, we pro-

pose a data model for the Twittersphere that proactively captures Twitter-specific interactions.

We examine the feasibility of running analytical queries on GDBMS and offer empirical anal-

ysis of the performance of the proposed approach. Next, we consider a use case of modeling

software code dependencies in a graph database system, and investigate how these systems can

support capturing the evolution of a codebase overtime. We study a code comprehension tool

that extracts software dependencies and stores them in a graph database. On a versioned graph

built using a very large codebase, we demonstrate how existing code comprehension queries can

be efficiently processed and also show the benefit of running queries across multiple versions.

Another important aspect of this thesis is the study of storage aspects of graph systems.

Throughput of many graph queries can be significantly affected by disk I/O performance,

therefore graph database systems need to focus on effective graph storage for optimising disk

www.manaraa.com

xvi

operations. We observe that the locality of edges plays an important role and we address

the edge-labeling problem which aims to label both incoming and outgoing edges of a graph

maximizing the ‘edge-consecutiveness’ metric. By achieving a better layout and locality of

edges on disk, we show that our proposed algorithms result in significantly improved disk I/O

performance leading to faster execution of neighbourhood queries.

Some applications require the integrated processing of queries from graph and the textual

domains within a graph database system. Aggregation of these dimensions facilitate gaining

key insights in several application scenarios. For example, in a social network setting, one may

want to find the closest k users in the network (graph traversal) who talk about a particular

topic A (textual search). Motivated by such practical use cases, in this thesis we study the

top-k social-textual ranking query that essentially requires efficient combination of a keyword

search query with a graph traversal. We propose algorithms that leverage graph partitioning

techniques, based on the premise that socially close users will be placed within the same parti-

tion, allowing more localised computations. We show that our proposed approaches are able to

achieve significantly better results compared to standard baselines and demonstrating robust

behaviour under changing parameters.

Keywords. Graph Database Systems, Graph data models, Query processing, Property

graphs, Graph storage, Edge Labeling, Versioned codebase, Twitter Data management, Graph

keyword search.

www.manaraa.com

Chapter 1

Introduction

Graph theory has a long standing history dating back to the notable mathematical problem

of the Seven Bridges of Königsberg in the Eighteenth century [19]. Leonhard Euler, laying

the foundations in graph theory in 1736, introduced this problem where the objective was to

generate a walk through the city of Königsberg that would cross each bridge once and only

once. In its simplest form, a graph is a mathematical structure to model pairwise relations

between objects. In the Königsberg problem, the nodes in the graph represented the land mass

and the edges represented the bridges that connected them.

Researchers have since modeled both natural and man-made structures as graphs in bi-

ological, transport, software, physical and social systems. The types of analyses conducted

on these models are diverse, giving rise to interesting research questions with domain-specific

challenges. For example, the pertinent use cases in social networks may involve both content

and user recommendations; protein interaction networks are modeled to understand complex

biology of diseases by analysing substructures that are similar to a given subgraph; and in

software systems, dependencies may be modeled for advanced source code comprehension and

analysis.

1.1 Graph Data Management Systems

For years researchers have employed ad-hoc tools and techniques to manage and analyse graph

data. However, graph data generated from heterogeneous sources are becoming more complex

and are growing rapidly in size. Social networks such as Facebook1 and Twitter2 have been
1https://www.facebook.com/
2https://twitter.com/

1

www.manaraa.com

Motivation and Contributions 2

experiencing exponential growth in their user base since their inception, just over a decade ago.

The advent of the scale and complexity of graph data in the recent years have demanded more

sophisticated, scalable data management systems that can store, manage and query graph data.

This allows researchers to focus on the analysis task with the help of a coherent tool set that

takes care of the management aspect of graph data. At the forefront of such tools are Graph

Database Management Systems (GDBMS) (or simply graph database systems). Design goals

are similar to that of Relational Database Management Systems developed for the management

of relational data. Considering that modern graph database systems are relatively new, they

require in-depth investigation of effectiveness and efficiency in managing graph data. This thesis

focuses on the following related topics concerning graph database systems.

• Data modeling: Unlike in relational systems, graph data do not conform to a strict

schema. Types of nodes, edges and properties on them can be user-defined, with no strict

rules on what can and cannot be modeled. The abstraction of the data model is domain-

or application- specific, formulated primarily based on the types of queries we want to

efficiently run on them.

• Query Processing: Graph database systems do not share a universal query language

to query its graph data. Some graph systems expose declarative query languages, while

others feature versatile APIs to interact with the database. We examine how effective

these different query methods are in expressing the information needs of different use

cases and how efficiently the queries can be processed.

• Storage and Indexing: Although storage and indexing specifications and mechanisms

are nearly ubiquitous among many relational databases, in graph databases, they differ

significantly. As such there are many opportunities to investigate storage and indexing

aspects, with the goal of improved disk I/O and query performance.

Focused on the above aspects, we next outline the motivations for investigating several

applications and detail our contributions in each.

1.2 Motivation and Contributions

The focus of this thesis is to explore mechanisms, problems, and challenges associated with

graph modeling, storage and query processing aspects of graph database systems. In this

section we introduce our motivations and contributions pertaining to these related topics.

www.manaraa.com

Motivation and Contributions 3

1.2.1 Modeling large scale applications in a GDBMS

Modeling large scale and complex applications is an important aspect to realizing the effec-

tiveness of graph database systems. This has also enabled us to understand potential gaps in

these systems when modeling such varied structures and use cases. Modeling generally involves

preparing the graph data itself in a suitable schema and performing appropriate queries relevant

to each application. We adopt two important applications to observe how GDBMS can support

complex features on each of them. First, we choose a popular application of GDBMS that in-

volves modeling social networks. The second application requires a more complex analysis; we

consider modeling software code dependencies to capture the temporal evolution of a codebase.

Modeling Social Networks. We select Twitter as a representative microblogging platform

for social network analytics and review prior work on data collection [22, 24, 28], data man-

agement frameworks [22, 14, 20] and query systems [168, 54, 127] to understand the existing

models and analytics space. With our observations of the extensive survey, we highlight the

need to assimilate the individual work-flows in an integrated solution addressing the limitations

of existing systems. Different from traditional RDF and relational data models, we observe po-

tential in a graph-view of Twitter, enabling users to ask interesting graph-based queries on these

new models. We propose a data model for the Twittersphere that proactively captures Twitter

specific interactions and properties in a graph schema. On this model, we introduce a diverse

set of microblogging queries, conduct experiments on a large Twitter dataset and investigate

the feasibility of running these queries on existing GDBMS. We share our introspection on

working with these graph database systems and discuss open problems and opportunities for

future research. We detail this work in Chapter 3.

Modeling Evolving Code Dependencies. Next we consider how GDBMS can be used

to model software code dependencies capturing the temporal evolution of a codebase. Code

dependencies can be naturally modeled as a dependency graph representing call graphs, type

graphs and inheritance hierarchies. Frappe [77] is a source code-querying tool developed by

Oracle Labs that supports code comprehension tasks for large C/C++ codebases. Current

graph database systems do not have in-built support for efficient management of versioned

graphs [164, 177]. We seek an efficient and scalable representation of the dependency graph

to model, store and query multiple revisions of a codebase. We evaluate the versioned model

with dependency graphs generated from a large codebase consisting of around 13 million lines

of code. On this large graph, we demonstrate that the model we propose on the graph database

www.manaraa.com

Motivation and Contributions 4

is scalable and performant and is able to seamlessly integrate current comprehension workloads

in addition to enabling queries across multiple versions. We detail this work in Chapter 4.

1.2.2 Storage and indexing issues in GDBMS

Many graph database systems (Neo4j [140], Sparksee [131], etc.) take different approaches

to define memory hierarchies for efficient query processing; we investigate how graph data

storage can be improved at a physical level for efficient processing of neighbourhood queries.

Modern graph database systems require further investigation into topics such as physical data

management to progress towards the level of maturity of relational database systems. We

observe that the locality of edges on disk play an important role in graph systems and our

motivation stems from optimizing storage of such systems.

Our goal in this study is to optimally assign edge labels to achieve improved disk locality

for efficiently answering typical graph queries, without modification to the storage internals of

the graph system at hand. We study algorithms to label edges in a way that maximizes the

total ‘edge consecutiveness’ of graph, i.e., maximize the number of sequentially labeled edges to

enable sequential storage, thereby increasing the locality of disk accesses. We conduct extensive

experiments on real graphs, and show significant benefits of our approaches over baselines in

disk I/Os and query times. We also demonstrate a case study of our methods applied in a

streaming graph partitioning scenario. We give details of our investigations in Chapter 5.

1.2.3 Query processing in GDBMS

Query processing in GDBMS may be done as part of data modeling itself to demonstrate the

feasibility and efficiency of the proposed schema. In the microblogging setting in Chapter 3,

we have explored a diverse set of queries facilitated by the proposed graph model. A set of

typical microblogging workloads are translated into both declarative and imperative languages

supported by different graph database systems. These queries cover use cases such as providing

friend recommendations, analysing user influence, and finding co-occurrences and shortest paths

between graph nodes. Similarly in the evolving graph model proposed in Chapter 4, we first

demonstrate how existing code comprehension can be efficiently performed on the model fol-

lowed by a discussion of processing queries spanning multiple versions. Edge labeling schemes

introduced in Chapter 5 have been tested on a variety of neighbourhood and shortest path

queries.

www.manaraa.com

Motivation and Contributions 5

In many real-world graphs, apart from the general attributes attached to the nodes, the

nodes may also contain free text. For example, when tweets are modeled as nodes, tweet text

may be associated to the node; and for a LinkedIn user, his/her interests or skills can be thought

of as free text. In the social network analytics setting above, we note the lack of support for

the combination of graph and text-based queries. The motivation for this is to answer queries

of the form – who are the users in my network (graph traversal) and who talk about topic A

(keyword search)? In Chapter 6 we study how GDBMS can efficiently support the combination

of graph and keyword search queries.

This query must take into account the social connectivity as well as the textual similarity

of users’ topics to the query. Query processing on each dimension has a long-standing history

on its own; queries over graph data has been extensively studied and many solutions, have

been proposed to speed up various categories of graph queries. On the other hand, from the

field of Information Retrieval (IR), searching through a large text corpus has well-defined query

processing strategies with indexing schemes. Our focus is on studying the query with a graph

database back-end and support seamless integration of keyword search into graph traversals.

Table 1.1: Structure of the thesis along with the focus, with reference to chapters

Data
modeling

Storage and
Indexing

Query
Processing Thesis Chapter

Social network analytics x x Chapter 3
Evolving code dependencies x x Chapter 4
Edge labeling x x Chapter 5
Graph-keyword search x Chapter 6

Table 1.1 shows the focus of each of the chapters in this thesis in terms of modeling, storage

and query processing of graph database systems.

www.manaraa.com

Publications 6

1.3 Publications

Below is a list of publications in chronological order that resulted from this PhD study.

Paper 1. Oshini Goonetilleke, Timos Sellis, Xiuzhen Zhang, and Saket Sathe. "Twitter

analytics: A big data management perspective". SIGKDD Explorations, 16(1), pages 11–20,

2014. The content of this paper is included in Chapter 3.

Paper 2. Oshini Goonetilleke, Saket Sathe, Timos Sellis, and Xiuzhen Zhang. "Microblog-

ging queries on graph databases: An introspection". In Proc. of ACM SIGMOD Workshop

on Graph Data Management Experiences and System (GRADES), pages 5:1–5:6, 2015. The

content of this paper is included in Chapter 3.

Paper 3. Oshini Goonetilleke, Danai Koutra, Timos Sellis, and Kewen Liao. "Edge labeling

schemes for graph data". In Proc. of the 29th International Conference on Scientific and

Statistical Database Management (SSDBM), pages 12:1–12:12, 2016. The content of this paper

is included in Chapter 5.

Paper 4. Oshini Goonetilleke, David Meibusch, and Ben Barham. "Graph data manage-

ment of evolving dependency graphs for multi-versioned codebases". In Proc. of the 33rd IEEE

International Conference on Software Maintenance and Evolution (ICSME), pages 574–583,

2017. The content of this paper is included in Chapter 4.

Paper 5. Oshini Goonetilleke, Danai Koutra, Kewen Liao and Timos Sellis. "Efficient edge

labeling schemes for large scale graph data". The content of this article is included in Chapter 5

and is under review in a journal.

Paper 6. Oshini Goonetilleke, Timos Sellis, Xiuzhen Zhang. "Social-Textual query pro-

cessing on graph database systems". The content of this paper is included in Chapter 6 and is

under review in a conference.

www.manaraa.com

Thesis Overview 7

1.4 Thesis Overview

The rest of the thesis is organised as follows. In Chapter 2 we begin by introducing the

preliminary graph concepts and definitions used throughout this thesis. In the same chapter we

describe graph applications and offer an in-depth investigation into graph database management

systems. As shown in Table 1.1, our contributions in Social Network analytics, Evolving code

dependencies, Edge labeling and Graph Keyword Search are detailed in Chapters 3, 4, 5 and

6 respectively. Finally, Chapter 7 summarises the contributions of this thesis and provides a

discussion on future research directions arising from this thesis.

www.manaraa.com

Chapter 2

Background

In this thesis we focus on modeling, storage and query processing aspects of graph database

management systems that are gaining their momentum in the graph research community. In

this chapter we provide the background to the common themes presented in the rest of the

thesis. Graphs are a fundamental data structure in computer science; we begin this chap-

ter by a discussion on the theoretical aspects of graph types, properties, and typical graph

representations. All the graph database systems we have studied employ a variation of these

representations, and provide support for different graph types. We then present an overview of

different graphs originating from the real-world and describe interesting applications on them.

The GDBMS are then introduced, with the ‘property graph’ model they support and we com-

pare several options for modeling graph data. Finally, we review some of the popular graph

database systems and outline their approaches to graph storage and query processing features.

2.1 Preliminaries

In graph theory, networked data are modeled as graphs. A graph G is composed of a set of

vertices V (also called as nodes) and a set of edges E (also called as arcs, links) connecting these

nodes. The number of nodes |V | and edges |E| is denoted by n and m respectively. Some of the

8

www.manaraa.com

Preliminaries 9

different types of graphs are illustrated in Figure 2.1 and typically include directed, weighted,

bipartite and multi-graphs.

Directed and Undirected graphs. A graph is undirected if the edges have unordered pairs

of nodes where (i, j) ∈ E ⇔ (j, i) ∈ E. If the edges have direction (or the nodes are ordered)

then the graph is directed. A directed graph is also known as a digraph.

Weighted graph. In a weighted graph, a numerical weight is assigned to each edge. The

weight can be a positive or a negative value. A graph that has no weights assigned to the edges

is known as an unweighted graph.

(a) Simple graph (b) Directed graph

1 3

3

2 1

3

(c) Weighted graph (d) Multi-graph

Figure 2.1: Basic Graph types.

Multi-graph. A graph that has multiple edges between two ordered or unordered pairs of

nodes is known as a multi-graph.

Simple graph. An undirected, unweighted graph with no self loops or multi-edges is known

as a simple graph.

Attributed graph. Nodes and edges in a graph may have a set of key value pairs attached

to them describing non-graph meta data of these entities. The weight of the edge above is

considered one of the attributes on the edge.

Labeled graph. A specialized kind of an attribute known as a label may also describe a node

and/or edge to denote its type or kind. For example, a collaboration network may have authors,

www.manaraa.com

Preliminaries 10

venues and publications as node types, while cites, co-authors, published-in can be some of the

edge types. Such different types of nodes and edges are identified by a ‘label’.

Property graph. A graph that combines the features of a directed, attributed, labeled multi-

graph is known as a property graph. We give a formal definition of the property graph in

Section 2.4.1.

Bipartite graph. If a vertex set of a graph can be divided into two disjoint sets V1 and V2,

such that every edge connects a vertex in V1 to one in V2. In other words, there cannot be

edges connecting the nodes in the same set.

Complete graph. A complete graph is a graph in which each pair of graph vertices is connected

by an edge. The number of edges in this graph, m is n(n− 1)/2.

Subgraph. Given two graphs, G = (V,E) and G′ = (V ′, E′), G′ is a subgraph of G, (denoted

as G′ ⊆ G) if V ′ ⊆ V and E′ ⊆ E.

Next, we describe commonly-used properties of graphs.

Neighbourhood. An adjacent vertex of a given vertex v in a graph is a vertex that is connected

to v by an edge. The neighbourhood N of a vertex v consists of all vertices adjacent to v. In a

directed graph, the distinction between the outgoing (Nout) and incoming (Nin) neighbourhood

can be made.

Degree. The degree of a vertex is the number of edges incident to the vertex and is denoted as

d(v). On a directed graph, outgoing and incoming degrees can be distinguished by the number

of outgoing neighbuors dout(v) and incoming neighbours din(v) respectively. A vertex with

degree 0 is said to be isolated while a vertex with degree 1 is known as a leaf or end node.

Connected Components. For an undirected graph, a connected component is the maximal

set of nodes where for every pair of nodes u and v in the subgraph, a path connects them. A

graph may have several such subgraphs of connected components, and the one with the highest

number of nodes is known as the largest connected component.

Strongly, weakly connected Components. A directed graph is said to be strongly con-

nected if there is a directed path connecting any two pairs of nodes in the graph. It is weakly

connected if there is an undirected path between any two node pairs.

Clustering Co-efficient. This is a measure of the degree to which the graph nodes tend to

cluster together. The global metric for the graph is based on the local clustering coefficient

www.manaraa.com

Graph Representation 11

[206] for each node. Clustering coefficient C(v) of a node v is the fraction of edges between the

vertices within the neighbourhood and the maximum number of edges that exist between them.

Thus, the average clustering coefficient of the graph is given by C̄, where C̄ = 1
n

∑n
i=1C(vi)

and n = |V |.

Diameter. Diameter is the length of the maximum shortest path between any two nodes u

and v.

Table 2.1 lists some common symbols used throughout the thesis. When applicable, each

chapter also defines a set of symbols that are specific to that chapter.

Table 2.1: Table of common graph symbols used in notations

Symbol Description

G A graph
V,E Set of vertices and edges, resp.
|V | or n Number of vertices
|E| or m Number of edges
Nin(v) Incoming neighbours of vertex v
Nout(v) Outgoing neighbours of vertex v
din(v) Incoming degree of vertex v
dout(v) Outgoing degree of vertex v
d̄ Average node degree
c̄ Average Clustering Coefficient of the graph
(v, x) An outgoing edge of v, or incoming edge of x
p(u, v) Length of the shortest path between nodes u and v

2.2 Graph Representation

In this section we introduce data structures typically used to represent graph data. The graph

database systems we study in this thesis encode the graphs as a variation of one of these

fundamental structures. We use the example graph in Figure 2.2 to describe different graph

representations below.

Edge list. The simplest way to represent raw data in a graph is via an edge list. This contains

a list of all edges in the graph denoted as pairs of nodes: (u, v). For an undirected graph,

the same edge may appear twice with two entries: (u, v) and (v, u). To simplify different

computations, edge lists are generally converted to one of the following data structures.

www.manaraa.com

Graph Representation 12

A

D

C

B

E

e1 e2

e3

e5 e6

e7

e4

Figure 2.2: An example graph

A B C D E

A 0 0 0 0 0

B 1 0 0 0 0

C 1 1 0 0 0

D 1 0 1 0 0

E 0 0 1 1 0

Figure 2.3: Adjacency Matrix representation of the graph

Adjacency Matrix. One way to represent a graph is via an Adjacency Matrix, denoted by

an n × n matrix A. For a simple graph, A(i, j) = 1 if (i, j) ∈ E and 0 otherwise. If the

graph is weighted, the A(i, j) position contains the value of the weight of the edge, denoted

by A(i, j) = w. When the graph is undirected, the matrix is symmetric along the diagonal. If

the graph does not contain self loops, the diagonal elements A(i, i) = 0. The matrix is said

to be sparse when most of the elements are zero. Many of the real networks such as social

networks and collaboration networks generate sparse matrices. Figure 2.3 is an adjacency

matrix representation of the graph in Figure 2.2.

A matrix representation of a graph is efficient in addition and deletion of edges with O(1)

complexity and an operation to retrieve one’s neighbours would be of complexity O(n). In-

sertion and deletion of nodes would require restructuring the matrix. Systems favour this

representation since many of the graph operations can be converted to a series of matrix mul-

tiplication functions. The drawback to this approach is space inefficiency, especially for sparse

www.manaraa.com

Graph Representation 13

matrices, requiring quadratic O(n2) space, which is independent of the actual number of edges

in the graph.

A

B

C

D

E

A

A B

A

D

C

C

x

x

x

x

x

Figure 2.4: Adjacency List representation of the graph

Adjacency list. In this representation, every vertex v maintains a list of its adjacent neighbors.

If the graph is undirected and an edge connects node u and v, then the list of u will contain the

vertex v and vice versa. Figure 2.4 is an adjacency list representation of the graph in Figure 2.2.

An operation to retrieve neighbours of a vertex v is proportional to the degree of the vertex:

O(d(v)). Node insertion and deletion is much cheaper. Adding an edge would require adding

an entry to the source node list performed in O(1), while deleting an edge would require more

restructuring of the adjacency list. For a sparse graph, an adjacency list is much more space

efficient (compared to an adjacency matrix), requiring O(V + E) space.

e1 e2 e3 e4 e5 e6 e7

A -1 0 -1 0 -1 0 0

B 1 -1 0 0 0 0 0

C 0 1 1 -1 0 -1 0

D 0 0 0 1 1 0 -1

E 0 0 0 0 0 1 1

Figure 2.5: Incidence Matrix representation of the graph

Incidence Matrix. Incidence matrix is a variation of the traditional adjacency matrix, with

a size proportional to the number of nodes and edges, i.e. space cost of O(V E). Here, the rows

and columns of the matrix represent the nodes and the edges respectively. The value 1 in the

matrix denotes that a column edge is incident on the row vertex and 0 otherwise. If the graph

www.manaraa.com

Real-world Graphs and Applications 14

is directed, the edge type is denoted with a 1 (outgoing) or -1 (incoming). Figure 2.5 is an

incidence matrix representation of the graph in Figure 2.2.

Compressed Sparse Row (CSR). CSR is a variation on storing the adjacency matrix A for

fast access of rows. It represents A with three 1-dimensional vectors that contain the non-zero

values in the matrix, the extent of rows and the column indices. Let NNZ denote the number

of non zero values in A — for the graph represented in the matrix shown in Figure 2.6 NNZ=7.

The first vector of size NNZ, AN shows the NNZ entries in A, in row-major order. The vector

AI, of size |V |+1 essentially aggregates the number of NNZ values in each row. The final vector,

also of length NNZ, denotes the column indices of the NNZ values in A. This representation

allows fast matrix vector multiplications.

A B C D E

A 0 0 0 0 0

B 7 0 0 0 0

C 5 4 0 0 0

D 3 0 6 0 0

E 0 0 7 2 0

7 5 4 3 6 7 2

0 0 1 3 5 7

0 0 1 0 2 2 3

AN

AI

AJ

Figure 2.6: CSR representation of the graph on the left side

In practical applications, there are many variations and modifications of the above structures

with the common objective of space-efficient storage and better performance of insert, update

and query operations. In some cases, these basic structures are inadequate to represent certain

characteristics of a graph – for example, a multi-graph, or properties attached to a node/edge

cannot be represented in an adjacency matrix and thus require additional structures to capture

them.

2.3 Real-world Graphs and Applications

In this section we review some common types of networks and interesting use cases and appli-

cations from the real-world.

Social Networks. Social networks in the real-world come in different flavours, e.g.: Face-

book, an online social media and networking platform; Twitter, an online news, networking

www.manaraa.com

Real-world Graphs and Applications 15

and microblogging platform; LinkedIn, a platform specialized for business and professional net-

working, and FourSquare, a location-based mobile social network. The kind of analyses and

applications on these platforms are equally diverse with platform-specific goals and challenges.

In the simplest form, a social network is made up of users as nodes and edges representing dif-

ferent semantics: a mutual, undirected connection for LinkedIn and Facebook, and a one-way

directed follows connection to subscribe to user content in the case of Twitter.

Recommendation is a common goal in many of the social networks. Recommended items

can be either content or other users based on interests/connections of existing users. The

suggestive ability of these platforms is expected to be both efficient and effective; demanding

that the right content is suggested promptly. Influence analysis is another useful application in

many social networks that aim to understand a set of users who are most likely able to influence

a large proportion of the network for the purposes of content propagation.

Review Networks. Users can post reviews about different types of content they consume; for

example, product reviews in Amazon and Ebay, and movie reviews in platforms such as Netflix.

In the simplest form, a review network can be represented as a bipartite graph (ref. Section 2.1)

where node types are Users and Items (e.g. books, movies, products), and edges represent a

review made by a user on some items. Collaborative filtering or recommender systems is

the prominent application of these types of networks that aims to predict the likelihood of a

purchase based on preferences of other users so that a recommendation can be made.

Program Dependency Graphs. Graphs have been used to represent data and control flow

dependencies among software entities. For example, a ‘call graph’ is a type of control flow graph

where nodes are subroutines in a program and a relationship (u, v) denote that procedure u

calls procedure v. This intermediate representation of a software program facilitates a variety

of useful applications including code optimizations, bug identification, defect prediction and

program analysis.

Source code analysis and comprehension is one application of program dependency graphs.

Depending on the use case, the graph captures program dependencies in varied precision and

granularity corresponding to different levels of abstractions. In these graphs, queries such as

impact estimation are performed to understand and explore the affected regions of the code if

one seed function is changed. The dependency information stored enables comprehension of

paths and its transitive effects on code repositories.

www.manaraa.com

Graph Data Management Systems 16

Evidently, the above discussion is a non-exhaustive list of graph types and use cases. There are

many more types of networks such as knowledge graphs, biological networks, web graphs and

transport networks running a diverse set of application scenarios.

2.4 Graph Data Management Systems

The advent of the scale and complexity of graph data in recent years has led to a demand for

more sophisticated systems that can store, manage and query graph data. We introduce the

‘property graph model’ that better characterises real-world graphs, acknowledging labels and

properties on both nodes and edges. Then we illustrate several options for modeling graph data

and finally present the native graph database systems that simplify logical representation and

facilitate efficient graph traversals.

2.4.1 Property Graph Data Model

Many of the graphs from the real-world require more information other than the plain nodes

and edges. A property graph essentially consists of nodes, edges, labels and properties on both

nodes and edges. A property graph demands no fixed schema and as such can contain any

number of attributes. An example of a property graph from a hypothetical academic network

is shown in Figure 2.7. This example is used to explain concepts throughout this chapter.

The property graph consists of four node types (labels) author, publication, publication

venue and author affiliation. Among these nodes, five relationship types (labels) exist:

author_of, published, cites, affiliated and follow. Additional key-value pairs of proper-

ties further explain the nodes and edges in the graph: for example, the order on the author_of

edge, denotes the position at which the author appears in the publication. A property graph

is generally queried starting at a given node and traversing the graph in either a depth-first or

breadth-first direction, exploring the neighbourhood.

Definition 1 (Property graph). A property graphG can be formally defined asG = (V,E,L,A)

with added characteristics L and A to a simple graph. V is a set of vertices and each edge in

E ⊆ (V ×V) connects two vertices. L is a set of labels, and A is a set of attributes of key-value

pairs. A label is given to each vertex and edge where L = { (o, l) | o ∈ (V ∪E), l ∈ Σ∗} and Σ is a

finite alphabet. The attributes set A contain key-value pairs where Ai = {(k1, v1), (k2, v2), ...},
assigning a key ki to a value vi ∈ D where D may represent a valid data type such as int,

boolean, string etc.

www.manaraa.com

Graph Data Management Systems 17

9

citesauthor

published
published

author

author

affiliated

affiliated

name: john
title: student

name: kate
title: prof.

name: david
title: dr

keyword: graph
type: short

keyword: query
type: full

name: sigmod
location: chicago

institute: rmit
location: melb

institute: ibm
location: ny

order:3

order:1

years: 8

years: 5
years: 3

10

11

13

16

17

15

18

author

order:1

14

2 1

7

5

3
6

4

8
affiliated

12

author affiliationpublication venue

order:2

follow

19

Figure 2.7: Property graph representation of academic network

Modeling considerations. It must be noted there are several alternatives to modeling the

above academic network. The affiliations for each author may be modeled as a property of

the author node. Since the affiliated edge contains a property, this consequently becomes

a property on the author node as well. Modeling decisions such as these are primarily driven

by the types of queries that are executed on them. For example, if a certain workload requires

aggregating all authors of a particular affiliation, and if we model the affiliation as part of the

author node, this would require unnecessary traversal of all authors, filtering on the property.

On the other hand, if the affiliation is modeled as a node, the same query translates to a simple

1-step in-neighbours of the affiliation.

www.manaraa.com

Graph Data Management Systems 18

2.4.2 Options for modeling graph data

The property graph that we described above can be modeled using either relational, RDF or

a native graph model. To interact with the graph in each of these approaches, SQL, SPARQL

and custom query languages are employed. Columnar- and object- oriented data models are

also used in some representations. Next, we describe the logical representation of the graph

model, indexing mechanisms and query system in each of these approaches.

2.4.2.1 Relational model with SQL queries

Let us consider the academic social network created in the above property graph example by way

of follow edges among authors. One way to capture the information in the relational model

is via two tables – one to hold the information of the authors of the network (Author table)

and another to store the relationships among them (Friendship table) as shown in Figure 2.8.

At the top, the Authors and their friendships are modeled in a traditional ER-diagram. Any

additional properties on nodes and edges can also be held in each of the tables. Similarly, the

other types of nodes and edges in Figure 2.7 are typically modeled in different tables.

Author

AuthorId Name Title

1 Eric Student

2 Kate Professor

3 John Student

...

6 Andrea Dr.

Friendship

from_Id to_Id

1 2

1 3

1 4

2 5

2 3

3 6

3 2

4 2

5 1

Author

follow

1..m

1..m

Figure 2.8: Relational representation of an academic social network

Let us consider a few integral graph-based queries on the relational model and observe how

they can be expressed and processed in SQL. A simple query to find details of Eric’s direct

neighbourhood of followers can be written as follows:

www.manaraa.com

Graph Data Management Systems 19

SELECT u1.Name, u1.Title

FROM Author u1 JOIN Friendship f

ON u1.AuthorId = f.to_id

JOIN Author u2

ON u2.AuthorId = f.from_id

WHERE u2.Name = ‘Eric’

This query is unnecessarily complicated. We could create an index on the from_id to speed

up the query. The query in the reverse direction (assuming a non-reciprocal friendship) to find

the details of Authors who are following ‘Eric’ may require having to go through all the rows

in the Friendship table. Retrieving friends at greater depths becomes more complex both in

terms of query expression and of processing which involve several recursive joins. For example,

a query to find Eric’s friends-of-friends can be written as follows:

SELECT u1.Name, u1.Title

FROM Author u1 JOIN Friendship f1

ON u1.AuthorId = f1.from_id

JOIN Friendship f2

ON f1.from_id = f2.to_id

JOIN Author u2

ON u2.AuthorId = f2.to_id

WHERE u1.Name = ‘Eric’ AND f2.to_id <> u1.AuthorId

This fundamental query in any graph traversal operation is already computationally expen-

sive to retrieve a 2-hop neighbourhood. Thus we need to explore representations that implicitly

model graph relationships.

2.4.2.2 RDF model with SPARQL queries

With the origin of the semantic web, the Resource Description Framework (RDF) has been used

to represent linked data. RDF models linked data and stores ‘triplets’; a subject-predicate-

object. The subject denotes the resource, and the predicate denotes traits or aspects of the

resource and expresses a relationship between the subject and the object. The resources are

generally web sources, represented as nodes in the RDF graph by a unique URI. SPARQL [157]

is the official W3C standard on querying RDF graphs. SPARQL query language is specialized

for efficient pattern-matching tasks on RDF data.

www.manaraa.com

Graph Data Management Systems 20

From the property graph shown in Figure 2.7, the following triplets can be generated rep-

resenting different semantics.

1. An attribute on a node: kate (subject) has the title (predicate) professor (literal object).

2. A relationship to a node: kate (subject) is affiliated to (predicate) ibm (resource object).

Specifically, the node data (triplet 1) and the graph topology (triplet 2) are both modeled

the same way; thus RDF cannot distinguish between these two triplets. As a result, we cannot

model attributes on the edges or multiple edges among the same pair of nodes. Also, since

relationship instances cannot be qualified, traversal queries become tedious. There are several

work-arounds to these issues, but they come at the cost of complex queries and/or modeling

decisions that are counter intuitive. Path queries and reachability expressions were only intro-

duced to the SPARQL specification recently (v.1.1), and have not yet been widely deployed in

triplestores. The reason for this could also be that traversals are not fundamentally common

and are not the focus of the RDF/SPARQL domain.

Triplestores are used to manage and provide the core infrastructure for RDF triplets and

are queried using SPARQL. Some examples are AllegroGraph [4], Virtuoso [202], GraphDB [72]

and RDF-3x [141]. Many of these stores are capable of accommodating triplets in the scale of

billions. The key feature of these triplestores is to perform inferencing [203] for the SPARQL

queries which discover new relationships based on the existing model and a set of rules.

2.4.2.3 Native graph model with custom query languages

While relational and the RDF data models are good at managing and querying one type of

data, they fall short in management of connected data. In most of the native graph stores,

the graph is generally represented with some variation to the methods described in Section 2.2.

Nodes and edges are first-class citizens, and the layout of the graph on disk is optimized for

fast graph traversals scaling to large graphs.

‘Index-free adjacency’ is a concept popularised by many of these native graph systems. This

refers to the feature that the adjacent elements of a node can be retrieved efficiently from disk

without having to look-up additional indexes. In other words, index-free adjacency enables

looking up neighbours in constant O(1) time and is only dependent on the edges emanating

from the source vertex. In the relational model, to retrieve neighbours, it requires O(log n) cost

looking up a global index such as a B-tree, which is dependent on the total number of nodes

n in the graph. A native graph store essentially makes the graph structure explicit where each

www.manaraa.com

Graph Data Management Systems 21

vertex serve as a mini-index of its adjacent elements [167]. Like SQL for the relational model,

there is no ubiquitous query language across all native graph stores. As a result, these graph

database systems either expose an API with a set of primitives or makes use of a custom query

language. In the next section, we discuss several systems that support native graph storage.

2.4.3 Graph Database Systems

For many years, relational database management system (RDBMS) technologies have been the

de-facto standard in storage and management of a variety of data types. With the advent of

the Web 2.0, the data that has been generated have become more complex and much bigger

in size. The complexity and magnitude of the data were challenging existing technologies to

meet growing and different requirements for data management and query processing. These

new technologies were termed NoSQL (Not-only-SQL) and included broad categories catering

to various types of data, namely, key-value stores, column-family stores, document-oriented

databases and graph databases.

Until recently, many of the applications which were built using graph data have been stored

and managed in non-graph data models such as the relational model. As discussed in the

previous section, this resulted in counterintuitive approaches for understanding graph data and

inefficient query processing schemes. Graph Database Management Systems have been proposed

to classify a group of technologies that are explicitly storing relationships where the persistent

graph is very similar to the logical data model they represent. We review some popular graph

database systems and discuss their data model, storage mechanisms and methods of query

processing.

2.4.3.1 Neo4j

Neo4j [140] is a graph database system developed by Neo Technologies described as an ACID-

compliant transactional database. It is an open source platform supporting the property graph

model running on the Java Virtual Machine (JVM). Like many other NoSQL databases, Neo4j is

schema-free, which means that there need not be a pre-defined schema on the node, relationship

or the attributes.

The high-level architecture of Neo4j is shown in Figure 2.9. Users can query the database

via one of the three APIs: two imperative interfaces (Traversal and Core) or the API of the

declarative query language, Cypher. Users are also able to interact through several application

architectures, namely, embedded, server and server with extensions [166]. At the operating

www.manaraa.com

Graph Data Management Systems 22

Core API

Traversal API

Cypher API

Object Cache

File System Cache

Lock Manager

Transaction Manager

Node Store
Relationship

Store

Programmatic APIs

Property
Store

Record Store

Operating System

Figure 2.9: High-level architecture of Neo4j.

system level, a file system cache takes care of regions in the stored files while the object cache

is optimized for traversals with node and relationship objects.

Node (14 bytes)

Relationship (33 bytes)

 in use flag
(1)

next
relationshipID

(4)

next
propertyID

(4)

labels
(5)

in use flag
(1)

source
node
(4)

target
node
(4)

type
(4)

source node’s
previous

relationship ID
(4)

source node’s
next

relationship ID
(4)

target node’s
previous

relationship ID
(4)

target node’s
next

relationship ID
(4)

next
property ID

(4)

Figure 2.10: Neo4j layout of a storage record of nodes and relationships.

Storage. In Neo4j, graphs are stored as linked lists of fixed size records. In physical storage,

separate records are maintained for nodes, relationships, properties and types. The layout of

nodes and relationships are shown in Figure 2.10. Each record in the node store is of fixed size,

to enable fast lookups on disk. An entity ID, multiplied by the record size, immediately gives the

offset in the node stores. A node record holds information about the ID of its first relationship,

ID of its first property followed by five bytes for information on its type. Each relationship

www.manaraa.com

Graph Data Management Systems 23

of fixed size contains pointers to source and target nodes, a pointer to the relationship type

(held in a type store), next and previous pointers for each source and target node, and finally

a pointer to the first property of the relationship. Representing both next and previous nodes

of a relationship enables traversal in either direction.

The property store is persistent as a key-value pair where the key is the name of the property

as a string, and the value can be a primitive type, string or an array. Each property block can

contain up to four property sub-blocks followed by a pointer to the next property [166]. Each

property block holds three values: (a) the property type, (b) pointer to the property index file

containing the property name, and (c) the property value—if the type is primitive, the value is

held in-line, otherwise points to a dynamic store record.

Query Processing. The Core API in Neo4j is written in Java and gives users access to low

level functions to interact with the database. Users are expected to have an understanding of

the domain in order to fine-tune the query and achieve good performance. Traversal API is

built on top of Core API enabling navigation in the graph structure. Retrieving the Authors

of publication 5 (ref. Figure 2.7), using the Core API can be written as follows.

Node pub = graphDB.getNodeById(5);

Iterable<Relationship> rels = pub.getRelationships(Direction.INCOMING, AUTHOR_OF);

for (Relationship rel : rels){

Node authorNode = rel.getStartNode();

String authorName = authorNode.getProperties("name");

}

Using the Cypher query language, the same query can be written as follows.

MATCH (p:PUBLICATION {id:5})<-[:AUTHOR_OF]-(a:AUTHOR))

RETURN a.name

As with any declarative language, Cypher presents a set of primitives to express the information

needs, making it less verbose and thus the preferred method of users.

2.4.3.2 Sparksee

Sparksee, formerly known as DEX [131], is a graph database system developed by Sparsity

technologies written in C++ with ACID compliance and transaction support. Sparksee graph

representation uses a combination of bitmap based data structures. It also supports directed,

labeled attributed multi-graphs as the graph model. The motivation behind using a bitmap

www.manaraa.com

Graph Data Management Systems 24

representation in Sparksee is two-fold [131]: first, bitmaps are able to hold large amounts of

information in reduced amount of memory. Second, graph queries can be converted to a series

of logic (bit) operations that can be performed very efficiently. Internally, each vertex v ∈ V
and edge e ∈ E is identified by a unique object identifier, ID ∈ Z∗. As with many graph

systems, an internal id generator assigns a unique ID to each new vertex or edge when they are

created and in the order they are inserted.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

venue
B1

author
B2

publication
B3

affiliation
B4

author
B5

affiliated
B6

published
B7

cites
B8

follow
B9

B1 1

B2 0111

B3 000011

B4 00000011

B5 00000000011011

B6 0000000010011

B7 000000000000000101

B8 00000000000000001

B9 0000000000000000001

oids

labels

oids

node types edge types

(a) Bitmaps for the Object Group storing type information

B10 0000000011

B11 0000000000110000001

B12 000000000000111

B13 00000000000000011

B14 000000000000000001

9

10

11

12

13

14

15

16

17

18

19

2

3

4

5

6

9

10

11

12

13

14

15

16

17

18

19

1

5

6

7

8

2

B15 000000000000000101

B16 00000000011001

B17 00000000000000101

B18 000000001

B19 0000000000011

B20 0000000000000000001

edgeId

tail
vid

edgeId

head
videdgeId edgeId

(b) Bitmaps for the Relationships Group with tail and head nodes

Figure 2.11: Property graph in a bitmap-based representation

Storage. Three groups of bitmaps capture the structure of an attributed multi-graph, namely

the Objects, Relationship and Attribute groups. The objects group stores the type information

for each node and edge; the relationship group consists of connectivity information recording

www.manaraa.com

Graph Data Management Systems 25

the heads and tails for each edge, and the attributes group stores properties for both vertices

and edges. The bitmap representation of the Object and Relationship group of the example

property graph (Figure 2.7) is shown in Figure 2.11a and Figure 2.11b respectively. The network

is stored similarly to an incident matrix described in Section 2.2.

Each group contains a mapping between an ID to a value and then a mapping between a

value to a bitmap of IDs which contains the value (ID → value → bitmap). Each oid in the

Objects group corresponds to a value of some type/label for nodes and edges. For example,

all published edge types are denoted by the bitmap B7, where the 16th and 18th positions of

the bitmap are set to one, which indicate the edge ids of that type. Similarly, the connections

are stored in the relationship group— since node id 5 is the head of three edges, 10, 11 and 14,

the B16 bitmap in the right of Figure 2.11b, marks aces on the 10th, 11th and 14th positions.

In terms of disk storage, a word-aligned scheme is used which can compress a long sequence

of zeros. The mappings between ids, values and bitmaps are stored in a B+ tree for efficient

retrieval [131].

Query Processing. Graph-based operations can be transformed into series of efficient bit

operations. For example, a query to retrieve the authors of publication 5 can be expressed as

a combination of set operations:

{lookup(TAILS, x) |

x ∈ objects(HEAD, objects(ID, 5)) ∩ objects(LABELS, ‘Author’))}

= {2, 3, 4}

The Sparksee API exposes a set of succinct functions for the users to manipulate more intuitively

than at the set level. The neighbors operation below is used to navigate the neighbour nodes

of a given identifier while an explore operation allows to navigate the edges incident to a

given node. These two primary navigation operations can be used to retrieve neighbours with

additional constraints on direction and edge type. The same query to retrieve authors of

publication 5 can be written in the API as:

long input = g.findObject(attributeID, attributeVal);

int edgeType = g.findType("AUTHOR_OF");

Objects authorList = g.neighbors(input, edgeType, EdgesDirection.INGOING);

Further, TraversalBFS and TraversalDFS operations facilitate breadth-first and depth-first

search and several filters on nodes and restrictions on the path can be specified on them.

www.manaraa.com

Graph Data Management Systems 26

2.4.3.3 Titan

Titan [12] is an open source distributed graph database built on top of Apache Cassandra. The

nodes and edges may be distributed and replicated across a cluster of machines and provide

support for thousands of concurrent users. Titan also allows other storage back-ends Apache

HBase and Oracle BerkeleyDB. Titan has support for transactions and is ACID compliant.

Storage. Titan leverages an adjacency list representation on disk, co-locating a node with its

adjacent edges. Depending on the choice for the back-end, exact storage method varies. With

a column-oriented [1] back-end like Cassandra, the adjacency list is stored in a single column

family where the row key is a vertex id. Each property and edge are stored in one column [25]

while direction and labels are stored as a column prefix. The Blueprints framework (Apache

TinkerPop 3.x1 since Aug. 2017) on which Titan is built supports vertex queries. It ensures

that the edges incident on a node are indexed by type, enabling efficient retrieval of edges of

that type. Vertex-centric indexes [12] on the other hand are made possible by the underlying

storage back-end for fine-grained retrieval of the vertex’s incident edges.

Query Processing. Native integration with the TinkerPop graph stack gives access to the

Gremlin query language. Gremlin is a path-oriented language which succinctly expresses com-

plex graph traversals and mutation operations [73]. It is procedural, allowing the programmer

to express queries as a set of steps or ‘pipes’. A query to retrieve the authors of the publication

5 (ref. Figure 2.7) can be written in Gremlin as follows.

g.V.has(‘id’, ‘5’)

.in(‘author’)

.name

Operations such as shortest paths traversals can be accomplished with a looping structure with

constraints for the maximum depth of the path.

2.4.3.4 Graph database system summary

Apart from the graph database systems mentioned above, there are also other distributed

systems such as InfiniteGraph [146]. OrientDB [29] is a graph database that also provides

support for key-value and document object models. Databases such as HyperGraphDB [83] are

specialized for directed hyper-graphs.
1Apache TinkerPop is an open source, vendor-agnostic, graph computing framework for both graph databases

and graph analytic systems

www.manaraa.com

Graph Data Management Systems 27

Table 2.2: Comparison of features in relational, RDF and native graph stores

Data Model Query System Consistency Back-end Language In-memory

Neo4j [140] property graph Cypher ACID Doubly lists Java No
Titan [12] property graph Gremlin ACID, Eventual Cassandra, Hbase Java No
Sparksee [131] property graph API ACID Bitmaps C++ No
OrientDB [29] multi-model Gremlin, SQL ACID Custom Java Multiple
InfiniteGraph [146] property-graph API, Gremlin Flexible Objectivity/DB Java, C++ No
HyperGraphDB [83] Hypergraph API MVCC Berkeley DB Java Multiple

AllegroGraph [4] RDF, XML SPARQL, Prolog ACID Custom C++, Lisp No
Virtuoso [202] RDF, relational SQL, SPARQL, .. ACID Object-relational C Yes
RDF-3X [141] RDF SPARQL Read-committed RISC-style - No

Filament [62] relational API - PostgreSQL Java Yes
SQLGraph [190] relational SQL ACID Relational,JSON Java No

We summarise different features of relational, RDF and native graph stores in Table 2.2. We

note the data model in these systems and provided query languages. Although not explicitly

mentioned all systems expose an API to interact with the database. It can be observed that

many of these systems provide support for transactions and different levels of consistency.

Multiple in the ‘in-memory’ column denote that both in-memory and other disk-based modes

are available.

2.4.4 Graph processing systems

To complete our discussion, we also distinguish the category of systems that have been de-

veloped primarily for processing very large graphs rather than for graph management. The

graph database systems we presented above are more suitable for OLTP-like workloads while

graph-processing systems are more focused on large-scale, off-line, analytical workloads. Typical

workloads are long-running, such as machine learning tasks, statistical inference and collabo-

rative filtering. Many of these systems have been developed over distributed storage to enable

iterative and batch processing of the entire graph data.

Pegasus [95] and GBase [93] are graph mining platforms on which the graph is internally

represented as a matrix and the matrix-based operations are run parallel on Hadoop / MapRe-

duce. Due to limitations in data-parallel systems for graph algorithms, the concept of a ‘graph-

parallel’ vertex-centric computation has been introduced. Computation that ‘thinks like a

vertex’, extending the Bulk Synchronous Parallel (BSP) model [199], has been made popular

by Google’s Pregel [126] implementation. Consequently, many graph-parallel solutions have

been developed in a distributed setting [65, 67, 174, 213] and on a single PC [110, 170, 76] with

proven performance over its data-parallel counterparts.

www.manaraa.com

Summary 28

2.5 Summary

In this chapter we first introduced graph preliminaries related to our thesis, including graph

types, graph properties and different graph representations. We discussed types of real-world

graphs and their applications such as social networks. We introduced the property graph model

that can describe graphs, not only with nodes and edges of a single type, but also allowing

different types of nodes and edges, and attributes on them. We comprehensively reviewed

graph data management systems that can model, store and query property graphs. The above

form the basis and background for our work described next.

In Chapter 3 we explore how graph database systems can be used in a social network setting

and study a series of queries relevant for a microblogging scenario. In Chapter 4 we examine

a code comprehension tool that captures dependency graphs and models them in a native

graph database. We extend the capabilities of a system to enable versioning of dependency

graphs when the underlying codebase changes over time. In Chapter 5 we investigate issues

around storage of graph systems and propose edge re-labeling techniques to increase disk locality

and thus improve query performance. In Chapter 6 we investigate how a textual search can

be combined with graph traversals, integrating these dimensions in a generic graph database

system.

www.manaraa.com

Chapter 3

Graph Database Systems for

Microblogging Analytics

With the inception of different types of social networks, a growing number of applications con-

sume data collected from various Microblogging platforms. Twitter is one such platform where

a myriad of research efforts have emerged studying different aspects of the Twittersphere. Each

study exploits its own tools and mechanisms to capture, store, query and analyse Twitter data.

Inevitably, frameworks have been developed to replace this ad-hoc exploration with a more

structured and methodological form of querying and analysis. An analysis framework typically

involves the following major components: data collection, pre-processing, data modeling and a

language for querying tweets.

In this chapter we highlight the need for graph-based data models for Microblogging analyt-

ics by reviewing existing approaches. Addressing limitations of existing models, we propose a

data model for the Twittersphere that captures different kinds of Twitter-specific interactions.

We examine the feasibility of running analytical queries using graph database systems and offer

empirical analysis of the performance of the proposed approach. Accordingly we observe how

well graph database systems are able to drive the overall data management goals of a Twitter

framework. In particular, we share our experiences on executing a wide variety of microblogging

queries on two popular graph databases: Neo4j and Sparksee. The queries are executed on a

large, real Twitter graph data set comprising nearly 50 million nodes and 326 million edges.

29

www.manaraa.com

Introduction 30

3.1 Introduction

The massive growth of data generated from social media sources has resulted in a growing

interest on efficient and effective means of collecting, analysing and querying large volumes

of social data. In particular, online social networking and microblogging platform Twitter

has seen exponential growth in its user base since its inception in 2006, with now over 200

million monthly active users producing 500 million tweets daily1. A wide research community

has been established since then with the hope of understanding interactions on Twitter. For

example, studies have been conducted in many domains exploring different perspectives of

understanding human behaviour. Prior research has focused on a variety of topics including

opinion mining [15, 18, 84], event detection [113, 171, 222], spread of pandemics [40, 152, 181],

celebrity engagement [212] and analysis of political discourse [45, 89, 196]. These types of

efforts have enabled researchers to understand interactions on Twitter related to the fields of

journalism, education, marketing, disaster relief etc.

Pre-
processing

Information
Extraction

Data Modelling

Query Processor

Data Analytics

Focused crawling

Graph

store

Data Management

Figure 3.1: An abstraction of a Twitter data management platform

The systems that perform analysis in the context of these interactions typically involve

the following major components: data collection, data management and data analytics. Here,

data management comprises information extraction, pre-processing, data modeling and query

processing components. Figure 3.1 shows a block diagram of such a system and depicts inter-
1http://tnw.to/s0n9u

http://tnw.to/s0n9u

www.manaraa.com

Introduction 31

actions among various components. Until now, there has been a significant amount of prior

research around improving each of the components shown in Figure 3.1, but to the best of our

knowledge, there have been no frameworks that propose a unified approach to Twitter data

management that seamlessly integrates all these components. Following these observations, in

the first part of this chapter we extensively survey the techniques that have been proposed for

realising each of the components shown in Figure 3.1, summarise their drawbacks and describe

the motivation for the need and challenges of a unified platform for managing Twitter data.

In our survey of existing literature, we observe ways in which researchers have tried to

develop general platforms to provide a repeatable foundation for Twitter data analytics. We

show the elements of our survey in Figure 3.2, primarily focusing on the following key elements.

• Data Collection. In Section 3.2 we describe mechanisms and tools that focus primarily

on facilitating the initial data acquisition phase. These tools systematically capture the

data using any of the Twitter’s publicly accessible APIs.

• Data management frameworks. In addition to providing a module for crawling tweets,

these frameworks provide support for pre-processing, information extraction and/or visu-

alization capabilities. In Section 3.3 we review existing data management frameworks.

• Languages for querying tweets. A growing body of literature proposes declarative

query languages as a mechanism of extracting structured information from tweets. Lan-

guages present end-users with a set of primitives beneficial in exploring the Twittersphere

in different dimensions. In Section 3.4 we investigate declarative languages and similar

systems developed for querying a variety of tweet properties.

As shown in Figure 3.2, for each of the components we make note of the data model and

storage systems in use, dimensions explored and the types of analysis conducted with Twitter

data. Armed with these observations, in Section 3.5 we consolidate the requirements of a data

management platform for Twitter and highlight the importance of a graph-based approach to

data management. As graph database management system is a good conceptual fit for our

proposed data model; we conduct experiments to test the feasibility of running a series of

interesting microblogging queries on them. Section 3.6 discusses preliminaries on the graph

schema, query abilities of the tested graph systems and the pre-processing of the data. For

the databases we do a feasibility analysis (Section 3.7) reporting on data ingestion and query

processing. Finally, in Section 3.8 we discuss our findings on these two graph databases and

propose improvements on them.

www.manaraa.com

Data Collection 32

Twitter Analytics

Data Collection

Specific Frameworks Querying Tweets

❏ Twitter APIs
❏ Data resellers
❏ Focused crawlers

❏ Pre-processing
❏ Information extraction
❏ Generic platforms
❏ Application-specific

platforms
❏ Visualization interfaces

❏ Twitter Query
Languages

❏ Generic languages
for social networks

❏ Twitter search

Data Management

Fe
at

ur
es Data Model and storage: flat files, relational, RDF, key-value, graph

Dimensions explored: text, location, time, interactions
Analysis types: offline vs. online (real-time) exploration

Figure 3.2: Elements of the survey on Twitter analytics

Our contributions of this work can be summarised as follows.

• Extensive Survey: We conduct the first extensive review on existing approaches to

primarily collect, represent, manage, and query twitter data. With these observations we

consolidate the requirements of an integrated data management framework for Twitter.

• Data Model and Queries: We propose a data model for the Twittersphere that pro-

actively captures Twitter specific interactions and properties. In this model, we suggest

microblogging queries useful in a variety of application scenarios such as recommendation,

co-occurrence and influence detection.

• Experiments: We conduct experiments on a large Twitter dataset, and examine how

queries perform on existing GDBMS that use graph structures to represent data.

• Lessons Learned: We share our introspection on working with these graph database

systems and discuss open problems and opportunities for future research.

3.2 Data Collection

Researchers have several options when choosing an API for data collection, i.e. the Search,

Streaming and the REST API. Each API has varying capabilities with respect to the type

and the amount of information that can be retrieved. The Search API is dedicated to running

www.manaraa.com

Data Collection 33

searches against an index of recent tweets. A request to the search API returns a collection of

relevant tweets matching a user query. The Streaming API provides a stream to continuously

capture public tweets where parameters are provided to filter the results of the stream by

hashtags, keywords, twitter user ids, usernames or geographic regions. The REST API can be

used to retrieve a fraction of the most recent tweets published by a Twitter user. All three

APIs limit the number of requests within a time window and rate-limits are posed at the

user and application levels. Responses obtained from Twitter API are generally in the JSON

format. Third party libraries2 are available in many programming languages for accessing the

Twitter API. These libraries provide wrappers and provide methods for authentication and

other functions to conveniently access the API.

Publicly available APIs do not guarantee complete coverage of the data for a given query as

the feeds are not designed for enterprise access. For example, the streaming API only provides a

random sample of 1% (known as the Spritzer stream) of the public Twitter stream in real-time.

Applications where this rate limitation is too restrictive can rely on Twitter’s enterprise APIs3.

Alternatively, third party resellers like DataSift, KeyHole or TweetReach4 provide various levels

of access to the full collection of tweets, known as the Twitter FireHose. For a cost, resellers

can provide access to archives of historical data, real-time streaming data, or both. It is mostly

corporate businesses who opt for such alternatives to gain insights into their consumer and

competitor patterns.

In order to obtain a dataset sufficient for an analysis task, it is necessary to efficiently query

the respective API methods, within the bounds of imposed rate limits. Creating the users’

social graph for a community of interest requires additional modules that crawl user accounts

iteratively. Large crawls with more complete coverage were made possible with the use of

whitelisted accounts [33, 109] and using the computation power of cloud computing [145]. Due

to Twitter’s current policy, whitelisted accounts are discontinued and are no longer an option

as a means of large data collection. Distributed systems have been developed [22, 109] to make

continuously running, large scale crawls feasible.
2https://developer.twitter.com/en/docs/developer-utilities/twitter-libraries
3https://developer.twitter.com/en/enterprise
4http://datasift.com/, http://keyhole.co, https://tweetreach.com

https://developer.twitter.com/en/docs/developer-utilities/twitter-libraries
https://developer.twitter.com/en/enterprise
http://datasift.com/
http://keyhole.co
https://tweetreach.com

www.manaraa.com

Data Management Frameworks 34

3.3 Data Management Frameworks

3.3.1 Focused Crawlers

The focus in studies such as TwitterEcho [22] and Byun et al.[28] is data collection, where

the primary contributions are driven by crawling strategies for effective retrieval and better

coverage. TwitterEcho describes an open source distributed crawler for Twitter. Data can be

collected from a focused community of interest and it adapts a centralized distributed archi-

tecture in which multiple thin clients are deployed to create a scalable system. TwitterEcho

devises a user expansion strategy in which the user’s follower lists are crawled iteratively using

the REST API. Byun et al.[28] proposed a rule-based data collection tool for Twitter with a

focus on analysing sentiment of Twitter messages. It is a java-based open source tool developed

using the Drools5 rule engine. They stressed the importance of an automated data collector

that also filters out unnecessary data such as spam messages.

3.3.2 Pre-processing and Information Extraction

Apart from data collection, several frameworks implement methods to perform extensive pre-

processing and information extraction of the tweets. Pre-processing tasks of TrendMiner [156]

take into account the challenges posed by the noisy genre of tweets. Tokenization, stemming

and part-of-speech (POS) tagging are some of the text processing tasks that better prepare

tweets for analysis. The platform provides separate built-in modules to extract information

such as location, language, sentiment and named entities that are deemed very useful in data

analytics. The creation of a pipeline of these tools allows the data analyst to extend and reuse

each component with relative ease.

TwitIE [24] is another open-source information extraction NLP pipeline customized for

microblog texts. For the purpose of information extraction (IE), the general purpose IE pipeline

ANNIE is used. It consists of components such as sentence splitter, POS tagger and gazetteer

lists (for location prediction). Each step of the pipeline addresses drawbacks in traditional

NLP systems by addressing the inherent challenges in microblog text. As a result, individual

components of ANNIE are customized. Language identification, tokenisation, normalization,

POS tagging and named entity recognition are performed with each module reporting accuracy

of tweets.
5http://drools.jboss.org/

http://drools.jboss.org/

www.manaraa.com

Data Management Frameworks 35

Baldwin [14] presented a system designed for event detection on Twitter with functionality

for pre-processing. JSON results returned by the Streaming API are parsed and piped through

language filtering and lexical normalisation components. Messages that do not have location

information are geo-located, using probabilistic models since it is a critical issue in identifying

where an event occurs. Information extraction modules require knowledge from external sources

and are generally more expensive tasks than language processing. Platforms that support real-

time analysis [14, 222] require processing tasks to be conducted on-the-fly where the speed of

the underlying algorithms is a crucial consideration.

3.3.3 Generic Platforms

There are several proposals in which researchers have tried to develop generic platforms to

provide a repeatable foundation for Twitter data analytics. Twitter Zombie [20] is a platform

to unify the data gathering and analysis methods by presenting a candidate architecture and

methodological approach for examining specific parts of the Twittersphere. It outlines archi-

tecture for standard capture, transformation and analysis of Twitter interactions using the

Twitter’s Search API. This tool is designed to gather data from Twitter by executing a series

of independent search jobs on a continual basis and the collected tweets and their metadata

is stored in a RDBMS. One of the interesting features of TwitterZombie is its ability to cap-

ture hierarchical relationships in the data returned by Twitter. A network translator module

performs post-processing on the tweets and stores hashtags, mentions and retweets, separately

from the tweet text. Raw tweets are transformed into a representation of interactions to cre-

ate networks of retweets, mentions and users mentioning hashtags. This feature captured by

TwitterZombie, which other studies have paid little attention to, is helpful in answering differ-

ent types of research questions with relative ease. Social graphs are created in the form of a

retweet or mention network and they do not crawl for the user graph with traditional following

relationships.

More recently, TwitHoard [185] suggested a framework of supporting processors for data

analytics on Twitter with emphasis on selection of a proper dataset for the definition of a

campaign. The platform consists of three layers; campaign crawling, integrated modeling, and

the data analysis. In the campaign crawling layer, a configuration module follows an iterative

approach to ensure the campaign converges to a proper set of filters (keywords). Collected

tweets, meta-data and the community data (relationships among Twitter users) are stored in

a graph database. This study should be highlighted for its distinction in allowing a flexible

www.manaraa.com

Data Management Frameworks 36

querying mechanism in addition to a data model built on raw data. The model is generated

in the integrated modeling layer and comprises a representation of associations between terms

(e.g. hashtags) used in tweets and their evolution in time. Their approach is interesting as it

captures the often-overlooked temporal dimension. In the third, data analysis layer, a query

language is used to design a ‘target view’ of the campaign data that corresponds to a set of

tweets that contain, for example, the answer to an opinion mining question.

While including components for capture and storage of tweets, additional tools have been

developed to search through the collected tweets. The architecture of CoalMine [210] presents a

social network data mining system demonstrated on Twitter, designed to process large amounts

of streaming social data. The ad-hoc query tool provides an end user with the ability to

access one or more data files through a Google-like search interface. Appropriate support is

provided for a set of Boolean and logical operators for ease of querying on top of a standard

Apache Lucene index. The data collection and storage component is responsible for establishing

connections to the REST API and to store the JSON objects returned in compressed formats.

In building support platforms, it is necessary to make provision for practical considerations

such as processing big data. TrendMiner [156] facilitates real-time analysis of tweets and takes

into consideration scalability and efficiency of processing large volumes of data. TrendMiner

makes an effort to unify some of the existing text processing tools for Online Social Networking

(OSN) data, with an emphasis on adapting to real-life scenarios that include processing batches

of millions of data. TrendMiner envisioned the system to be developed for both batch-mode

and online processing.

3.3.4 Application-specific Platforms

Apart from the above-mentioned general purpose platforms, there are many frameworks tar-

geted at conducting specific types of analysis with Twitter data. Emergency Situation Aware-

ness (ESA) [222] is a platform developed to detect, assess, summarise and report messages of

interest published on Twitter for crisis coordination tasks. The objective of their work is to con-

vert large streams of social media data into useful situation awareness information in real-time.

The ESA platform consists of modules to detect incidents, condense and summarise messages,

classify messages of high value, identify and track issues and finally to conduct forensic analysis

of historical events. The modules are enriched by a suite of visualisation interfaces. Baldwin et

al.[14] proposed another support platform focused on detecting events on Twitter. The Twitter

stream is queried with a set of keywords specified by the user with the objective of filtering the

www.manaraa.com

Data Management Frameworks 37

stream on a topic of interest. The results are piped through text-processing components and

the geo-located tweets are visualised on a map for better interaction. Clearly, platforms of this

nature that deal with incident exploration need to make provision for real-time analysis of the

incoming Twitter stream and produce suitable visualizations of detected incidents.

3.3.5 Support for Visualization Interfaces

There are many platforms designed with integrated tools predominantly for visualization, to

analyse data in spatial, temporal and topical perspectives. One tool is tweetTracker [108], which

is designed to aid monitoring of tweets for humanitarian and disaster relief. TweetXplorer [138]

also provides useful visualization tools to explore Twitter data. For a particular campaign,

visualizations in tweetXplorer help analysts to view the data in different dimensions; e.g. the

most interesting days in a campaign (when), important users and their tweets (who/what)

and important locations in the dataset (where). Systems like TwitInfo [127], Twitcident[2] and

Torettor [171] also provide a suite of visualisation capabilities to explore tweets in different

dimensions relating to specific applications such as fighting fires and detecting earthquakes.

Web-mashups like Trendsmap [193] and Twitalyzer [197] provide a web interface and enterprise

business solutions to gain real-time trends and insights of(or into) user groups.

3.3.6 Discussion: Data Model and Storage Mechanisms

Data models are not discussed in detail in most studies as a simple data model is sufficient

to conduct a basic form of analysis. When standard tweets are collected, flat files [14, 210]

are the preferred choice. Several studies that capture the social relationships [20, 28] of the

Twittersphere employ a relational data model but do not necessarily store the relationships in

a graph database. As a consequence, many analyses that can be performed conveniently on

a graph are not captured by these platforms. Only TwitHoard [185] models co-occurrence of

terms as a graph with temporally-evolving properties. Twitter Zombie [20] and TwitHoard [185]

should be highlighted for capturing interactions including the retweets and term associations

apart from the traditional follower/friend social relationships. TrendMiner [156] draws explicit

discussion on making provision for processing millions of data and takes advantage of the

Apache Hadoop MapReduce framework to perform distributed processing of the tweets stored

as key-value pairs. CoalMine [210] also has Apache Hadoop at the core of its batch processing

component responsible for efficient processing of large amounts of data.

www.manaraa.com

Languages for Querying Tweets 38

Table 3.1: Overview of related approaches in data management frameworks.

Pre-processing Examples of Social and/or other Data Store
extracted information interactions captured?

TwitterEcho [22] X Language Yes Not given
Byun et al.[28] Location Yes Relational
Twitter Zombie [20] X Yes Relational
TwitHoard [185] X Yes Graph DB
CoalMine [210] No Files
TrendMiner [156] XX Location, Sentiment, NEs No Key-value pairs
TwitIE[24] XX Language, Location, NEs No Not given
ESA [222] X Location, NEs No Not given
Baldwin et al.[14] XX Language, Location No Flat files

Table 3.1 illustrates an overview of related approaches and features of different platforms.

Pre-processing in Table 3.1 indicates if any form of language processing tasks such as POS

tagging or normalization is conducted. Multiple ticks (X) correspond to a task that is carried

out extensively. Information extraction refers to the types of post-processing performed to infer

additional information, such as sentiment or named entities (NEs). In addition to collecting

tweets, some studies also capture a user’s social graph while others propose the need to regard

interactions of hashtags, retweets and mentions as separate properties. Backend data models

supported by the platform shape the types of analysis that can be conveniently done on each

framework. From the summary in Table 3.1, we can observe that each study on data manage-

ment frameworks concentrate on a set of challenges more than others and graph-based models

remain largely unexplored.

3.4 Languages for Querying Tweets

Next, we survey declarative languages that are available for querying different aspects of the

Twittersphere paying attention to their underlying data models and query dimensions. The

goal of proposing declarative languages and systems for querying tweets is to put forward a set

of primitives or an interface for analysts to conveniently query specific interactions on Twitter,

exploring the user, time, space and topical dimensions. High level languages for querying

tweets extend the capabilities of existing languages such as SQL and SPARQL. Queries are

either executed on the Twitter stream in real-time or on a stored off-line collection.

www.manaraa.com

Languages for Querying Tweets 39

3.4.1 Generic Languages

TweeQL [128] provides a streaming SQL-like interface to the Twitter API and provides a set

of user-defined functions (UDFs) to manipulate data. The objective is to introduce a query

language to extract structure and useful information embedded in unstructured Twitter data.

The language exploits both relational and streaming semantics. UDFs allow for operations such

as location identification, string processing, sentiment prediction, named entity extraction and

event detection. In the spirit of streaming semantics, it provides SQL constructs to perform

aggregations over the incoming stream on a user-specified time window. The result of a given

query can be stored in a relational fashion for subsequent querying.

Models for representing any social network in RDF have been proposed by Martin and

Gutierrez [129] allowing queries in SPARQL. Their work explored the feasibility of adoption of

this model by demonstrating their idea with an illustrative prototype but did not focus on a

single social network such as Twitter in particular. TwarQL [135] extracts content from tweets

and encodes it in RDF format using shared and well-known vocabularies (FOAF, MOAT, SIOC)

enabling querying in SPARQL. The extraction facility processes plain tweets and expands its

description by adding sentiment annotations, DBPedia entities, hashtag definitions and URLs.

The annotation of tweets using different vocabularies enables querying and analysis in different

dimensions such as location, users, sentiment and related named entities.

Temporal and topical features are of paramount importance in an evolving microblogging

stream like Twitter. In the languages above, time and topic of a tweet (topic can be represented

simply by a hashtag) are considered meta-data of the tweet and are not treated any differently

from other metadata reported. Topics are regarded as part of the tweet content or what drives

the data filtering task from the Twitter API. There have been efforts to exploit features that

go well beyond a simple filter based on time and topic. Plachouras and Stavrakas [154] stressed

the need for temporal modeling of terms in Twitter to effectively capture changing trends. A

term refers to any word or short phrase of interest in a tweet, including hashtags or output of

an entity recognition process. Their proposed query operators can express complex queries for

associations between terms over varying time granularities, to discover the context of collected

data. Operators also allow retrieving a subset of tweets satisfying these complex conditions on

term associations. This enables the end-user to select a good set of terms (hashtags) that drive

the data collection, and this has a direct impact on the quality of the results generated by the

analysis.

www.manaraa.com

Languages for Querying Tweets 40

Spatial features are another property of tweets often overlooked in complex analyses. Previ-

ously discussed studies use the location attribute as a mechanism to filter tweets. To complete

our discussion, we briefly outline two studies that used geo-spatial properties to perform com-

plex analysis using the location attribute. Doytsher et al.[53] introduced a model and query

language suited for integrated data connecting a social network of users with a spatial network

to identify places visited frequently. Edges named life-patterns are used to associate the social

and spatial networks. Different time granularities can be expressed for each visited location

represented by the life-pattern edge. Even though the implementation employs a partially

synthetic dataset, it will be interesting to investigate how the socio-spatial networks and the

life-pattern edges that are used to associate the spatial and social networks can be represented

in a real social network dataset with location information, such as Twitter. GeoScope [26] finds

information trends by detecting significant correlations among trending location-topic pairs in a

sliding window. This gives rise to the importance of capturing the notion of spatial information

trends in social networks in analysis tasks. Real-time detection of crisis events from a location

in space, exhibits the possible value of Geoscope. In one of the experiments, Twitter is used as

a case study to demonstrate its usefulness: a hashtag is chosen to represent the topic and city

from which the tweet originates is chosen to capture the location.

3.4.2 Query Languages for Social Networks

To the best of our knowledge, there is no existing work focusing on high level languages operating

on the Twitter’s social graph. However it is important to note proposals for declarative query

languages tailored for querying social networks in general [5, 179, 54, 129, 130, 168]. One of the

queries supported are path queries satisfying a set of conditions on the path, and the languages

in general take advantage of inherent properties of social networks. Semantics of the languages

are based on Datalog [130], SQL [54, 168] or SPARQL [129]. Implementations are conducted

on bibliographical networks [54], Facebook and social content sites like Yahoo! Travel [5] and

are not tested on Twitter networks taking Twitter specific affordances into consideration.

3.4.3 Information Retrieval - Tweet Search

Another class of systems presents textual queries to efficiently search over a corpus of tweets.

The challenges in this area are similar to that of information retrieval but also have to deal

with peculiarities of tweets. The short length of tweets in particular creates added complexity

to text-based search tasks as it is difficult to identify relevant tweets matching a user query

www.manaraa.com

Languages for Querying Tweets 41

[16, 66]. Expanding tweet content is suggested as a way to enhance meaning. The goal of such

systems is to express a user’s information need in the form of a text query, much as in search

engines, and return a tweet list in real-time with effective strategies for ranking and relevance

measurements [55, 63, 209]. Indexing mechanisms were discussed in [36] as they directly impact

efficient retrieval of tweets. The TREC microblogging track6 is dedicated to calling participants

to conduct real-time ad-hoc search tasks over a given tweet collection. Publications of TREC

[149] document the findings of all systems in the task of ranking the most relevant tweets

matching a pre-defined set of user-queries.

3.4.4 Discussion: Data Model and Storage for the Languages

Relational, RDF and Graphs are the most common choices of data representation. There is a

close affiliation in these data models observing that, for instance, a graph can correspond to a

set of RDF triples or vice versa. In fact, some studies like Plachouras and Stavrakas [154] have

put forward their data model as a labeled multi digraph and have chosen a relational database

for their implementation. None of these query systems models Twitter social network with

following or retweet relationships among users. Doytsher et al.[53] implemented their algebraic

query operators with the use of both graph and a relational database as the underlying data

storage. They experimentally compared relational and graph database systems to demonstrate

the feasibility of the model. Languages that operate on the twitter stream such as TweeQL

and TwarQL generate the output in real-time; TweeQL [128] allows the resulting tweets to be

collected in batches then stores them in a relational database, while TwarQL [135] at the end

of the information extraction phase, encodes annotated tweets in RDF.

Table 3.2: Overview of approaches in systems for querying tweets.

Data Model Explored dimensions
Relational RDF Graph Text Time Space Social Network Real-Time

TweeQL [128] X X X X Yes
TwarQL [135] X X X X Yes
Plachouras et al.[155] X X XX No
Doytsher et al.[53]∗ X X X XX X No
GeoScope et al.[26]∗ X X X X Yes
Languages on social networks∗ X X X X XX No
Tweet search systems X XX X X Yes

Table 3.2 illustrates an overview of related approaches in systems for querying tweets. Data

models and dimensions investigated in each system are depicted. Systems that have made
6http://trec.nist.gov/

http://trec.nist.gov/

www.manaraa.com

Requirements of an Integrated Solution 42

provision for the real-time streaming nature of the tweets are indicated in the Real-time column.

Multiple ticks (X) correspond to a dimension explored in detail. Note that the systems marked

with an asterisk (*) are not implemented specifically targeting tweets, although their application

is meaningful and can be extended to the Twittersphere. We observe there is a potential for

developing languages for querying tweets that include querying by dimensions that are not

captured by existing systems, especially the social graph.

3.5 Requirements of an Integrated Solution

It would be interesting to explore how we can assimilate individual efforts with the goal of

providing a unified framework that can be used by researchers and practitioners across many

disciplines. Integrated solutions should ideally handle the entire workflow of the data analysis

life cycle from data management to presenting the results to the user. The literature we have

reviewed in previous sections outlined efforts that support different parts of the workflow. In

this section, we present our position with the aim of outlining significant components of an

integrated solution addressing the limitations of existing systems. To complete our discussion,

we also summarize key research issues in data management and present technical challenges

that need to be addressed in the context of building a data management platform for Twitter.

Olteanu et al [147] presents a detailed investigation on general challenges of research done on

cross-disciplinary social data. In this recent work, complimentary aspects such as data quality,

biases and ethical considerations have been extensively reviewed.

According to a review of literature conducted on the microblogging platform [39], a majority

of published work on Twitter concentrates on the user domain and the message domain. The

user domain explores properties of Twitter users in the microblogging environment while the

message domain deals with properties exhibited by the tweets themselves. In comparison to the

extent of work done on the microblogging platform, only few have investigated the development

of data management solutions and query languages that describe and facilitate processing of

social networking data. In consequence, there is an opportunity for improvement in this area for

future research to address the challenges in data management. We elicit the following high-level

components and envisage a platform for Twitter that encompasses such capabilities.

www.manaraa.com

Requirements of an Integrated Solution 43

3.5.1 Focused crawler

Responsible for retrieval and collection of Twitter data by crawling the publicly-accessible

Twitter APIs. A focused crawler should allow the user to define a campaign with suitable

filters, monitor output and iteratively crawl Twitter for large volumes of data until its coverage

of relevant tweets is satisfactory. An analysis may require the definition of one or more data

collection campaigns:

• tweets for a specific time period, location or keyword(s);

• social graph originated from a set of seed users;

• social graph and all the tweets of those users, and

• users’ profile information.

Challenges and Research Issues. Once a suitable Twitter API has been identified, we

can define a campaign with a set of parameters. The focused crawler can be programmed to

retrieve all tweets matching the query of the campaign. If a social graph is necessary, separate

modules would be responsible to create this network iteratively. Exhaustively crawling all the

relationships between Twitter users is prohibitive, given the restrictions set by the Twitter API.

Hence the focused crawler must prioritize the relationships to crawl based on the impact and

importance of specific Twitter accounts. Where the platform handles multiple campaigns in

parallel, there is a need to optimize the access to the API. Typically, the implementation of a

crawler should aim to minimize the number of API requests, considering the restrictions, while

fetching data for many campaigns in parallel. Thus building an effective crawling strategy is a

challenging task, in order to optimize the use of API requests available.

Appropriate coverage of a campaign is another significant concern and denotes whether all

the relevant information has been collected. When specifying the parameters to define the

campaign, a user needs a very good knowledge of the relevant keywords. Depending on those

specified keywords, a collection may miss relevant tweets in addition to the tweets removed due

to restrictions by APIs. Plachouras and Stavrakas’ work [155] is an initial step in this direction

as it investigated this notion of coverage and proposed mechanisms to automatically adapt the

campaign to evolving hashtags. Other issues in collecting and processing generic social data

discussed in [147] are all still applicable for Twitter data and must be cautiously dealt with.

www.manaraa.com

Requirements of an Integrated Solution 44

3.5.2 Pre-processor

As highlighted in Section 3.3.2, this stage usually consists of modules for pre-processing and

information extraction considering the inherent peculiarities of tweets: not all frameworks we

have discussed provided this functionality. Features of a pre-processor may include basic text

processing or more advanced modules useful in conducting analysis on tweets. Basic text

processing on tweets may include normalisation, tokenisation and POS tagging.

Advanced information extraction attempts to derive more information from plain tweet text

and their meta-data such as:

• named entity recognition;

• tweet and user location prediction;

• sentiment analysis, and

• language detection.

Ideally, end-users should be able to customize the modules to suit their requirements and

integrate any combination of the components into their own applications.

Challenges and Research Issues. Many problems associated with summarization, topic

detection and POS tagging in well-formed documents, e.g. news articles, have been extensively

studied. Traditional named entity recognizers (NERs) depend heavily on local linguistic features

of well-formed documents [163], such as capitalization and POS tagging of previous words. None

of the characteristics hold for tweets with short utterances of tweets limited to 140 characters

(testing 280 characters since Sept. 2017), which make use of informal language, undoubtedly

making a simple task of POS tagging more challenging. Besides the length limit, heavy and

inconsistent usage of abbreviations, capitalizations and uncommon grammatical constructions

pose additional challenges to text processing. Any effort that uses Twitter data needs to

make use of appropriate twitter-specific strategies to pre-process text, addressing the challenges

associated with intrinsic properties of tweets.

Similarly, information extraction from tweets is not straightforward as it is difficult to

derive context and topics from a tweet that is a scattered part of a conversation. There is

separate literature on identifying entities (references to organizations, places, products, persons)

[115, 165], languages [31, 71], and sentiment [150] present in the tweet text for a richer source of

information. Location is another vital property representing spatial features either of the tweet

or of the user. The location of each tweet may be optionally recorded if using a GPS-enabled

device. A user can also specify his or her location as a part of the user profile and is often

reported in varying granularities. The drawback is that only a small portion of about 1% of the

www.manaraa.com

Requirements of an Integrated Solution 45

tweets are geo-located [38]. Since analysis almost always requires the location property, when

absent, studies conduct their own mechanisms to infer location of the user, a tweet, or both.

There are two major approaches for location prediction: content analysis with probabilistic

language models [38, 44, 79] or inference from social and other relations [35, 50, 176].

3.5.3 Data Model

Much of the literature presented (Section 3.3.6 and 3.4.4) does not emphasize or draw explicit

discussions on the data model in use. The logical data model greatly influences the types

of analysis that can be done with relative ease on collected data. A physical representation

of the model involving suitable indexing and storage mechanisms of large volumes of data is

an important consideration for efficient retrieval. We notice that current research pays little

attention to queries on Twitter interactions, the social graph in particular. A graph view of

the Twittersphere is consistently overlooked and we recognize there is much potential in this

area. The graph construction on Twitter is not limited to considering the users as nodes and

links as following relationships; embracing useful characteristics such as retweet, mention and

hashtag co-occurrence networks in the data model will create opportunities to conduct complex

analyses on these structural properties of tweets. We envision data models that consist of the

following properties:

• tweets and their meta-data: timestamp, location, text, keywords and language etc.

• users and their meta-data: profile_name, verified accounts and location etc.

• social connections among users: user–follow–user, user–mention–user;

• propagation connections among twets: tweet–retweet–tweet;

• topical behaviour of tweets: tweet–has–hashtag;

• connections among users and tweets: user–posts–tweet, and

• co-occurrence behaviour among topics: hashtag–cooccur–hashtag.

As shown in Figure 3.3, the above requirements can be modeled as a directed attributed

multi-graph (i.e. property graph) with three types of nodes: user, tweet and hashtag. A

multi-graph allows two nodes to be connected with more than one edge. Users following each

other are represented by a follows relationship, while posting is represented by a posts edge

between a user and tweet. A retweet of an original tweet is denoted by a retweets edge, while

mentions of a tweet by a particular user are captured by a mentions edge. If a particular tweet

contains a hashtag, the tags edge is used to represent this information.

www.manaraa.com

Requirements of an Integrated Solution 46

user tweet hashtag

follows
posts

mentions tags

retweets

Figure 3.3: Graph-based data model for the Twittersphere.

In Sections 3.3.6 and 3.4.4 we outlined several alternative approaches in literature for a data

model to characterise the Twittersphere. The relational and RDF models are frequently chosen

while graph-based models are acknowledged but, not realized concretely at the implementation

phase. With a data model such as Figure 3.3, graph data management in Twitter can be

extremely diverse and interesting; different types of networks can be constructed apart from

the traditional social graph. The advent of a graph view to model the Twittersphere gives rise

to a range of queries that can be performed on the structure of the tweets, essentially capturing

a wider range of use case scenarios used in typical data analytics tasks. We need to investigate

prevalent technologies such as graph database systems that can conveniently persist graphs

with the above schema facilitating graph traversals on them.

3.5.4 Query Language

Languages described in Section 3.4, define both simple operators to be applied on tweets and

advanced operators that extract complex patterns, which can be manipulated in different types

of applications. Some languages provide support for continuous queries on the stream or queries

on a stored collection, while others offer flexibility for both. The advent of a graph view makes

crucial contributions in analysing the Twittersphere, allowing us to query twitter data in novel

and varying forms. It will be interesting to investigate how typical functionality [211] provided

by generic graph query languages can be adapted to Twitter networks.

As discussed in Section 3.4.2, there are already languages similar to SQL which have been

adapted to social networks. Many of the techniques mentioned in the literature are for generic

social networks under a number of specific assumptions. For example, social networks satisfy

properties such as the power law distribution, sparsity and small diameters [133]. We envision

queries that take this a step further and execute on Twitter graphs. Simple query languages

FQL [57] and YQL [216] provide features to explore properties of Facebook and Yahoo APIs

but are limited to querying only part(usually a single user’s connections) of the large social

www.manaraa.com

Requirements of an Integrated Solution 47

graph. Considering the features we included in the data model in the previous section, a query

system on Twitter should be able to efficiently execute queries on the following dimensions:

• attributes (meta-data) on users and tweets;

• different types of connections: user–follow–user, tweet–retweet–tweet etc. and

• search through keywords, terms and hashtags within tweets.

Visualizing the data retrieved as a result of a query in a suitable manner is also an important

concern. Another interesting avenue to explore is the introduction of a ranking mechanism of

the query result. Ranking criteria may involve relevance, timeliness or network attributes like

the reputations of users in a social graph. Ranking functions are a standard requirement in the

field of information retrieval [36, 85] and studies such as SociQL [179] report the use of visibility

and reputations metrics to rank results generated from a social graph. A query language with

a graph view of the Twittersphere along with capabilities for visualizations and ranking will

certainly benefit efforts to analyse Twitter data.

3.5.5 General Challenges in Data Management

One of the predominant challenges is the management of large graphs that inevitably results

from modeling users, tweets and their properties as graphs. With the large volume of data

involved in any practical task, a data model should be information-rich, yet also be a concise

representation that enables expression of useful queries. Queries on graphs should be optimized

for large networks and should ideally run independently of the size of the graph. There are

already approaches that investigate efficient algorithms on very large graphs [94, 91, 92, 173].

Efficient encoding and indexing mechanisms should be in place, taking into account variations

of indexing systems already proposed for tweets [36] and indexing of graphs [217] in general. We

need to consider maintaining indices for tweets, keywords, users, hashtags for efficient access

to data in advance queries.

Besides the above challenges, tweets impose general research issues related to big data.

Challenges should be addressed in the same spirit as any other big data analytics task. In the

face of challenges posed by large volumes of data being collected, the NoSQL paradigm should be

considered an obvious choice for dealing with them. Developed solutions should be extensible for

new requirements and should indeed scale well. With respect to implementation, it is necessary

to investigate paradigms that scale well, like MapReduce which is optimized for offline analytics

on large data partitioned on hundreds of machines. For OLTP-like workloads which require

low-latency access to small portions of the graph schema, MapReduce-based graph models may

www.manaraa.com

Graph Database Systems for Microblogging Queries 48

not be an ideal candidate. Consequently, we argue that database systems such as Titan [12],

Sparksee [131], and Neo4j [140] should be compared for graph implementations. In the next

section, we investigate how well graph database systems can drive the data management goals

of a Twitter framework.

3.6 Graph Database Systems for Microblogging Queries

In the previous sections, we highlighted the need for efficient querying and management of large

collections of Twitter data modeled as graphs. In the second part of this study, we model the

basic elements of the Twittersphere as graphs, and determine the feasibility of running a set of

microblogging queries in graph database systems and present our introspection. As shown in

the graph schema in Figure 3.3, Twitter can be modeled as a labeled, directed, attributed multi-

graph. Graph database systems support management of property graphs, which consolidate

the above features (Detailed in Section 2.4.1), thus become a good conceptual fit to test our

model.

In existing work around the topic, analyses of general data management queries on graph

database systems have been widely reported [8, 200, 88], but none have demonstrated the

feasibility of analyzing microblogging queries using such databases. It is noteworthy that most

of the prior studies have focused on either executing MLDM (machine learning data mining)

algorithms over large graphs [132] or on performing graph data management queries using

relational databases [123]. In many of these studies, the goal is to create benchmarks for

graph database management systems in terms of computational [132] or data management

query workloads [200, 88, 125]. In addition, a large number of existing research has focused

on using RDF stores or relational databases [123, 200] to store Twitter data [70]. Most of the

relational queries are written with self-joins, requiring many optimizations in order to achieve

an acceptable performance. Different from these approaches, we study the feasibility of using a

graph database system to query Twitter data. We believe that graph data management systems

are better equipped to test the particular type of microblogging data workloads used in this

chapter. We define queries relevant to microblogging and share our introspection on executing

them using graph management systems; thereby perfectly complementing those prior works.

For our analysis, we have carefully chosen queries pertinent to several applications of mi-

croblogging data. For example, our queries are relevant to applications such as providing friend

recommendations, analyzing user influence, finding co-occurrences and shortest paths between

graph nodes. In addition, we have analyzed fundamental atomic operations like selection and

www.manaraa.com

Graph Database Systems for Microblogging Queries 49

retrieving the neighbourhood of a node. For executing the aforementioned queries, we have

chosen two popular open-source graph database systems: Neo4j [140] and Sparksee [131]. Such

systems are typically able to efficiently answer data management queries concerning attributes

and relationships exploiting the structure of the graph. We particularly want to find answers

to the following questions.

• How efficiently can graph systems ingest a large graph dataset?

• Can graph systems model the Twittersphere with all the required properties?

• Can microblogging workloads be effectively translated to graph queries?

• How efficient are the queries when running them in a declarative and procedural fashion?

• What are the limitations of graph database systems and future research directions?

The goal of this work is not to perform a full benchmark of the two systems or recommend

one over the other. Instead our objective is to report our experiences working on these two

graph database systems, as a way forward for us to understand the capabilities of graph database

systems for data management.

3.6.1 Database Schema

The data model we proposed in Section 3.5.3 is what we use in this study. Here, in Figure 3.4 we

describe it further with attributes, and discuss a few alternate data modeling options. The figure

only shows a few attributes attached to each of the nodes and edges; User and Tweet nodes

particularly has many more properties on them. Many of the edges may have the timestamp as

an attribute. A Twitter dataset collected from an API would require pre-processing to create

many of these relationships: follows relationship may be directly returned by the Twitter’s

REST API while a Tweet may have to be processed to extract the hashtag nodes and retweet

relationships. Although we specify multiplicity on the edges, they are generally enforced at the

application level since many graph database systems cannot defined such constraints on the

schema.

Some applications would require tweet text to be tokenized and stored in an inverted index,

in order to be able to efficiently search keywords or hashtags within tweet text. If a keyword

search is conducted on any of these attributes, it is necessary to create a separate text index.

Next, let us consider a few more alternate modeling options. Depending on the analysis, we

may or may not model the hashtags as a separate vertex (and tags edge) in the graph schema.

Hashtags could be simply modeled as an attribute on the Tweet node itself. On the other

www.manaraa.com

Graph Database Systems for Microblogging Queries 50

user hashtagtweet
posts

follows retweets

mentions tags

userId
username
location

tweetID
text

timestamp

tagId
keyword

1:m

m:m 1:m

m:m m:m

Figure 3.4: Data model of the schema with properties and multiplicity of edges.

hand, modeling hashtags in this way enables us to efficiently express queries on co-occurrence

as discussed in Section 3.7.3.

3.6.2 Graph Databases

For our analysis we chose two leading open-source graph management systems, namely, Neo4j

and Sparksee. These systems not only support all the features needed for analyzing Twitter

data, but also support declarative query languages and API interfaces to interact with the prop-

erty graphs. Neo4j as introduced in Section 2.4.3.1 is a fully transactional graph management

system implemented in Java. It supports a declarative query language called Cypher. Using

the above schema, a query that retrieves the tweets of a given user with id 531 can be written

in Cypher as:

MATCH (u:USER uid:{531})-[:POSTS]->(t:TWEET)

RETURN t.text;

Another method of interaction is by using its core API. The core API offers more flexibility

through a traversal framework, which allows the user to express exactly how to retrieve the

query results. Cypher supports caching the query execution plans. This reduces the cost of

re-compilation at run-time when a query with a similar execution plan is executed more than

once. We have often used Cypher’s profiler to observe the execution plan and determine which

query plan results in the least number of database hits (db hits) and have rephrased the query

for better performance. It is noteworthy that all the queries can be alternatively written using

the Java API exploiting the traversal framework. However, as with any imperative approach,

the performance is dependent on how the query is translated into a series of API calls.

Sparksee, as introduced in Section 2.4.3.2, is a graph database management system imple-

mented in C++. Different to a declarative query language, imperative approach in Sparksee

www.manaraa.com

Data Ingestion and Query Processing 51

provides APIs in many languages. We choose the Java API for our experiments. As an exam-

ple, the query that retrieves the tweets of a given user 531 can be written in Sparksee’s API

as:

int nodetype = g.findType("USER");

int attrID = g.findAttribute(nodetype, "uid");

Value attrVal = new Value();

attrVal.setInteger(531);

long input = g.findObject(attrID, attrVal);

int edgeType = g.findType("POSTS");

Objects userTweets = g.neighbors(input, edgeType, EdgesDirection.OUTGOING);

Sparksee queries have two primary navigation operations: neighbours and explode, which

return an unordered set of unique node and edge identifiers that are adjacent to any given node

ID. When translating the queries using Sparksee’s API, we made use of most of the constructs

provided by the developers.

For this study, with the objective of understanding the diverse functionality of different

graph database systems, we opted to run our queries with the declarative interface for Neo4j

and the core API interface with Sparksee.

3.7 Data Ingestion and Query Processing

In this section we will analyse the feasibility of executing a wide variety of relevant microblogging

queries on Neo4j and Sparksee. In Section 3.7.1 we start by discussing the details of the dataset

we used. In Section 3.7.2 and Section 3.7.3, we share our experience in importing a large dataset

and executing microblogging queries respectively. All the experiments were conducted on a

standard Intel Core 2 Duo 3.0 GHz and 8GB of RAM with a non-SSD HDD. For Neo4j we

used Version 2.2.M03, and for Sparksee Version 5.1 was used. The research license for Sparksee

could accommodate up to 1 billion objects. We used the respective APIs in Java embedding

the databases.

3.7.1 Dataset and Pre-processing

For our experiments, we processed a dataset [116] consisting of 284 million follows relationships

among 24 million users. For a subset of 140,000 users who have at least 10 followees, this

dataset contains 500 tweets per user. We retain only 200 tweets per user from this set. By

www.manaraa.com

Data Ingestion and Query Processing 52

processing the tweets, we reconstruct all the edges and nodes of the schema shown in Figure 3.4.

Unfortunately, this dataset does not have exact information on retweets, therefore we could not

reconstruct the retweets edges. Although the dataset is not complete with tweets of all users,

it satisfies the requirement of being able to model the schema with a reasonable number of

nodes and edges. A summary of the characteristics of the dataset is shown in Table 3.3.

Table 3.3: Characteristics of the dataset depicting types of nodes and edges.

Nodes Relationships

user 24,789,792 follows 284,000,284
tweet 24,000,023 posts 24,000,023
hashtag 616,109 mentions 11,100,547

tags 7,137,992

Total 49,405,924 Total 326,238,846

As is the case with many social networks, the in-degree and out-degree distributions of the

follow network shows a power-law distribution (cf. Figure 3.5).

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Out−Degree

F
re

qu
en

cy

Out−Degree Distribution of Follows Network

(a) Out-degree

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

10
5

10
6

In−Degree

F
re

qu
en

cy

In−Degree Distribution of Follows Network

(b) In-degree

Figure 3.5: Degree distribution of the follows network.

3.7.2 Data Ingestion

We use batch-loading procedures offered by both graph systems. The same source files con-

taining the nodes and edges were used with both databases.

www.manaraa.com

Data Ingestion and Query Processing 53

3.7.2.1 Neo4j

We used the Neo4j’s import tool for importing the workload. We decided to use the import tool

after trying several other options. A main reason was that the tool effectively manages memory

without explicit configuration. However, it cannot create additional indices (on node IDs) while

importing takes place. Indices were created after the data import is complete. Neo4j’s import

tool writes continuously and concurrently to disk.

We plot the time taken for importing nodes and edges in Figure 3.6(a) and (b) respectively.

The plot shows the number of objects (nodes or edges) inserted against the time taken to

import every 1 million objects. Observe that the insertion of edges is smoother as compared to

the nodes. The jumps in Figure 3.6(a) are mainly due to the time taken to flush the nodes to

disk, which slightly slows down the import. After the node import is complete, Neo4j performs

additional steps, for example, computing the dense nodes, before it proceeds with importing

the edges. These intermediate steps require approximately 10 minutes. Then we create indices

on all unique node identifiers, which took about 8 minutes. Since a node could be of type user,

tweet, or hashtag, these indices give us the flexibility to efficiently query the aforementioned

node types. Overall, importing the workload required a total of 45 minutes, taking 20.8 GB of

disk space.

● ● ● ● ● ● ● ● ●
●

●

●

●
●

●

●
●

●
●

●
●

●

0

100

200

300

400

10 20 30 40 50
number of objects imported (million)

tim
e

(s
ec

s)

Neo4j

(a) Nodes

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●●

0

100

200

300

400

0 100 200 300
number of objects imported (million)

tim
e

(s
ec

s)

Neo4j

(b) Edges

Figure 3.6: Import times for nodes and edges using Neo4j. Jumps in the import
time in (a) are due to the time take to flush the cache onto disk.

www.manaraa.com

Data Ingestion and Query Processing 54

3.7.2.2 Sparksee

Sparksee scripts, which is an importing mechanism available in Sparksee, has been used to

define the schema of the database. A script also specifies the IDs to be indexed and source files

for loading data. Recovery and rollback features were disabled to allow faster insertions. The

extent and cache size are another two parameters that could be configured. With lower extent

sizes, we found that the insertions were fast initially but slows down as the database grows.

In the final configuration, the extent size was set to 64 KB and cache size to 5GB. Sparksee

recommends to materialise neighbours during the import phase. This creates a neighbour index

that can be used for faster querying. But with this option enabled, it took us a long time to

import and we aborted the import after waiting for 8 hours. With materialisation turned off,

Sparksee required 72 minutes, taking 15.1 GB of disk space.

●

●

●●●●
●●●●

●●●●
●●●●

●●●
●●●●

●●●●●●●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

0

250

500

750

0 10 20 30 40 50
number of objects imported (million)

tim
e

(s
ec

s)

● ● ●hashtag tweet user

Sparksee

(a) Nodes

● ●
● ● ● ● ● ●

● ● ●
● ● ●

● ●
●

●

●
●

●
●

●
●

●

●

● ●
●
●●●●
●●
●
●●
●●
●
●●●
●●●●●●●

0

1000

2000

3000

0 100 200 300
number of objects imported (million)

tim
e

(s
ec

s)
Sparksee

(b) Edges

Figure 3.7: Import times for nodes and edges using Sparksee. The vertical line in
(b) refers to the end of the import of follows edges.

The load times for nodes and edges are shown in Figure 3.7. The three coloured regions in

Figure 3.7(a) correspond to the three node types imported with different pay loads. The import

times of the nodes can be separated into the three regions marked in Figure 3.7(a). Since the

payload of the tweet nodes is larger than the other node types, Figure 3.7(b) refers to the end

of the import of follows edges, which make up 80% of the edges. The remaining edge types

add up to only 20% of the edges. Sharp jumps in the insertion time of edges is when the cache

is full and has to flush edge to disk before insertions can be continued. Notice that the jumps

in Figure 3.7(a) are bigger than the jumps in Figure 3.6(a). This is because Neo4j concurrently

www.manaraa.com

Data Ingestion and Query Processing 55

Table 3.4: Query workload. Experience for queries marked with (?) is discussed in
detail.

Category Example

Q1.1 Select All Users with a follower count greater than a user-defined threshold
Q1.2 Keyword-Search All tweets containing a given keyword
Q2.1 Adjacency (1-step) All the followees of a given user A
Q2.2 Adjacency (2-step) All the Tweets posted by followees of A
Q2.3 Adjacency (3-step) All the hashtags used by followees of A

(?) Q3.1 Co-occurrence Top-n users most mentioned with user A
Q3.2 Co-occurrence Top-n most co-occurring hashtags with hashtag H

(?) Q4.1 Recommendation Top-n followees of A’s followees who A is not following yet
Q4.2 Recommendation Top-n followers of A’s followees who A is not following yet
Q4.3 Recommendation (topic) Top-n users who have used the same hashtag as A
Q5.1 Influence (current) Top-n users who have mentioned A who are followees of A

(?) Q5.2 Influence (potential) Top-n users who have mentioned A but are not direct followees of A
(?) Q6.1 Shortest Path Shortest path between two users where they are connected by follows edges

writes to disk, while Sparksee waits for the cache to be full before flushing it to disk. The

plots for data ingestion are not consolidated as the batch loaders for the two database systems

operate on different settings. At the time of writing this chapter, both Neo4j and Sparksee

could not import additional data into an existing database (i.e. incremental loading), hence all

data was loaded in one single batch.

3.7.3 Query Processing

In this section we propose a set of relevant microblogging queries and share our experiences in

executing these queries on Neo4j and Sparksee. We proposed a set of non-exhaustive queries that

were designed keeping in mind the typical analysis that is performed with microblogging data.

The survey conducted in the previous sections, helped us to identify different dimensions in

which queries were executed in a varied set of applications. We also observed typical queries for

general social networks as proposed by [8] and extended the query classification by introducing

queries useful in the context of microblogs.

The queries were classified into six categories as shown in Table 3.4. For each category

we used 2-3 exemplar queries for performing the analysis. The systems were left in its default

configurations. We started by executing a query and, once the cache was warmed-up and the

execution time stabilized, we reported the average execution time over 10 subsequent runs. For

queries 2-5 we ran the queries varying the degree of the source node in concern. This gave an

idea of queries performance when the given node or subsequent nodes in the traversal involved

dense nodes. Although we present our experience with implementing all query types in both

www.manaraa.com

Data Ingestion and Query Processing 56

systems, we do not report on the performance of all query types as Q1, Q2 are deemed to be

simpler than the rest. Hence, in our discussion we focus on Q3, Q4, Q5, Q6, as indicated with

a (?) in Table 3.4. We discuss these queries since they exhibit interesting behaviour of the two

systems.

We intentionally explore the ability of two different approaches in the two databases: one

that uses a declarative query system (Cypher in Neo4j) and another that can manipulate the

inbuilt features of the exposed API (Sparksee). Executing Cypher queries may involve overhead

with processing the declarative syntax. Due to the use of the different approaches, the results

of the queries may not be directly comparable. Therefore, for reasons of fairness, we report on

the performance of these two systems separately.

3.7.3.1 Basic Queries

We start by presenting our experience with selection and adjacency queries. Using these atomic

operations, we construct new, complex microblogging queries.

Q1 – Select queries. These queries select nodes or edges based on a predicate over one

or more of their properties. The combination of selection conditions can be easily expressed

in Cypher with logical operators. Sparksee does not directly support filtering on multiple

predicates. Therefore, to evaluate a disjunctive or conjunctive query, we have to evaluate its

predicates individually and combine the results appropriately to construct the final result.

It is often necessary to search for tweets with a given keyword, or filter tweets from a given

time period. Performance of a partial match is tested by way of giving a keyword to search

for in the tweet text. Full-text indices are supported by Neo4j for text retrieval, while string

indexing is not yet offered by Sparksee.

Q2 – Adjacency queries. Adjacency queries retrieve the immediate neighbourhood of a node

specified with a different number of hops. This is different from traversal queries as it requires

a recursive exploration for a given edge type. A k-step neighbourhood can be explored via

different edge types. Adjacency queries form the basis of almost all other queries mentioned

in Table 3.4. As shown in this table, we have used 1-, 2- and 3-step adjacency queries in both

systems. Q2.1 is a simple query to retrieve the direct followers of User A. Q2.2 use the 2-hop

adjacency which first retrieves the direct followees of A and then retrieves their corresponding

tweets. Q2.2 with a condition on the time of tweet is a classic timeline query which gives all

the tweets posted by the followers of User A. Q2.3 will give an idea about what the followers of

a User A are talking about, retrieving the hashtags posted by the followers of that user.

www.manaraa.com

Data Ingestion and Query Processing 57

3.7.3.2 Advanced Queries

Next, we discuss our experiences in executing queries Q3-Q6. Queries Q3, Q4, and Q5 are top-

n queries. Such queries can be expressed and executed in Cypher using COUNT, ORDER BY and

LIMIT clauses. For Sparksee, a map structure is used for maintaining the required counts. These

counts are then sorted to obtain the final result. Its API does not provide the functionality to

limit the returned results so should be done programatically.

T1 T2 T3 Tn

H H1 H2

tags
tags

…..

Figure 3.8: Co-occurrence

example.

Q3 – Co-occurrence queries. Two nodes of any type

are said to be co-occurring with each other if there is an-

other node that connects both of them. Elements tested

here are co-occuring hashtags and mentions. Co-occurrence

is a special type of adjacency query useful for finding rec-

ommendations for users. Finding co-occurrences is a 2-step

process. For example, in Q3.1 the steps are (1) find the

users who mention a User A in their tweet set T, and (2) find

other users that are mentioned in the tweet set T. Figure 3.8

shows the two-step process for the top-n most co-occurring hashtags with H, in Q3.2. First, the

tweets T that contain the hashtag H, where T = {T1, T2, T3, ... Tn} should be filtered. In

the second step, hashtags tagged in each t ∈ T should be queried, aggregated and counted to

retrieve the top-n results.

The results of the query execution for query Q3.1 are shown in Figure 3.9(a) and (b). They

show a straightforward, increasing trend. However, when the number of rows returned are

low the results for both systems seem to fluctuate, but become more predictable with increase

in rows returned. Perhaps this fluctuation is due to the random disk accesses that require a

different portion of the graph for a new parameter in the query.

Figure 3.10: Neighborhood of A.

Q4 – Recommendation queries. Recommending

users to follow, often involves looking at a user’s 1- and

2-step followers/followees, since recommendations are

often useful when obtained from the local community.

Users can be recommended i) based on other users A

follows (Q4.1 and Q4.2), and (ii) based on common

topics used in A’s neighborhood (Q4.3). We propose

recommendation queries based on the incoming and outgoing neighbourhood of A as illustrated

in Figure 3.10. Q4.1 finds all the 2-step followees of a User A, who A is not following. Such

www.manaraa.com

Data Ingestion and Query Processing 58

●
●●

●
●

●●●●
●

●

●●●
●●●

●
●●

●

●

●

●
●

●

●
●

●

●

0

50

100

150

0 20000 40000 60000
number of rows

av
er

ag
e

tim
e

(m
s)

● Neo4j

(a) Q3.1 – Neo4j

●●●●●●●●●●●●
●●

●●
●●

●
●

●●
●

●

● ●

●●

●

●

0

100

200

0 20000 40000 60000
number of rows

av
er

ag
e

tim
e

(m
s)

● Sparksee

(b) Q3.1 – Sparksee

●●●
●
●●●●

●

●●●●●

●

●●

●

●●
●

●
●

●

●

●

●

0

20

40

60

80

0K 250K 500K 750K 1000K
number of rows

av
er

ag
e

tim
e

(s
ec

s)

● Neo4j

(c) Q4.1 – Neo4j

●●●●●
●●●

●●●●●●
●●●

●●
●

●
● ●

●

●

●

●

0

0.5

1

1.5

2

0K 250K 500K 750K 1000K
number of rows

av
er

ag
e

tim
e

(s
ec

s)

● Sparksee

(d) Q4.1 – Sparksee

●●●●●●●●●●●●●●
●
●● ●

●

●

●

●
●

● ●

●

●

●

●

0

50

100

150

0K 20K 40K 60K
degree

av
er

ag
e

tim
e

(s
ec

s)

● Neo4j

(e) Q5.2 – Neo4j

●●●●●
●●●●●●
●●●

●
●●

●

● ●

●●
●
●

●
●

●

●

●

0

0.1

0.2

0.3

0K 20K 40K 60K
degree

av
er

ag
e

tim
e

(s
ec

s)
● Sparksee

(f) Q5.2 – Sparksee

0

100

200

1 2 3
path length

av
er

ag
e

tim
e

(m
s)

(g) Q6.1 – Neo4j

0

5000

10000

15000

20000

1 2 3
path length

av
er

ag
e

tim
e

(m
s)

(h) Q6.1 – Sparksee

Figure 3.9: Query execution results. (a) and (b) show co-occurrence query (Q3.1),
while (c) and (d) show recommendation query (Q4.1). Influence query (Q5.2) is
shown in (e) and (f) and shortest path query (Q6.1) is shown in (g) and (h).

followees are recommended to A. Another variant of this query is Q4.2 that finds 1-step followers

of A’s 1-step followees. Only the top-n users who are followees of A’s followees are considered

relevant for recommendation thus the 2-step neighbourhood must be aggregated to return the

most relevant users. Users are considered relevant for a recommendation if they are followed by

many of the followees of User A. Suggestions can also be given to A based on users who use the

same popular hashtags with A (Q4.3), assuming they are talking about similar topics. These

queries essentially test the ability of the database to return different forms of ‘friend of a friend’

(FoF) queries.

Recall that for retrieving the neighbours of a particular node, Sparksee provides the neighbours

operator. For answering Q4.1, a separate neighbours call has to be executed for each 1-step

followee of A, which makes the execution of this query expensive. A separate neighbours call

is required since we are interested in the popularity (in terms of outlinks) in addition to the

identity of A’s 2-step followees.

The results of executing Q4.1 are shown in Figure 3.9(c) and (d). Finding 2-step followees

results in an explosion of nodes when 1-step followees have high out-degree. This forces the

systems to keep a large portion of the graph in memory. The sudden spike in the plot for Neo4j

is due to the fact that the direct degree of the node in concern is much higher even though

www.manaraa.com

Data Ingestion and Query Processing 59

the number of rows returned are lower. It is noteworthy that (a) Neo4j’s performance degrades

with a large intermediate result in memory, and (b) Sparksee is able to take advantage of the

graph already in memory, as we observe fewer fluctuations with the output.

Q5 – Influence queries. In many use cases, it becomes necessary to discover current and

potential influence a particular user has on her community. As an example, for targeting

promotions a retail store (with a Twitter account) might be interested in the community of

users whom they can influence. Although there exists research on many models of influence

propagation, we focus our attention on a set of intuitive queries that can be used for examining

influence.

A tweet user

follows

mentions posts

Figure 3.11: Influence of A.

Influence queries are defined based on current and poten-

tial influence with respect to a given user. Current influence

of A in our setting is defined as the most frequent users who

mention A and who are already followers of A. The potential

influence of a person is defined as people who are most men-

tioning A without being direct followers of A. In both Neo4j

and Sparksee this translates to finding the users who mentioned A, and removing (or retain-

ing) the users who are already following A. Figure 3.11 shows an example of first, by a 2-hop,

retrieving the users mentioned by A, and then filtering in(current) or out(potential) the subset

of users followed by A. Although not tested in our study, top-n retweets where A is mentioned

is also useful for A to know what tweets are going viral or being popular when A is mentioned.

The result of executing Q5.2 is shown in Figure 3.9(e) and (f). The degree of a user

mention(x-axis) is defined as the number of times that user is mentioned in the collection.

Notice that the degree is low, demonstrating behaviour similar to that of the first portion of

the plots for co-occurrence queries (refer Figure 3.9(a) and (b)).

Q6 – Shortest path queries. Shortest path queries find the shortest path between two given

nodes in a graph. In addition to finding a path, they can also handle restrictions on the type

of node that these queries can return as a part of the shortest path. An example of a shortest

path query is Q6.1. Shortest path queries can be the basis of a query that needs to target a

particular user or a community of users, essentially finding the degrees of separation from one

person to another.

In practice, it is necessary to limit the number of returned paths and/or depth of the

traversal (maximum hops); otherwise it could lead to an exhaustive search for all paths.

The Cypher function shortestPath was used for writing the query, while the native func-

www.manaraa.com

Discussion 60

tion SinglePairShortestPathBFS was used for Sparksee, where the maximum length of the

shortest path was set to 3 hops. The average time required to compute the shortest path be-

tween two randomly selected users is shown in Figure 3.9(g) and (h). In our experience, Neo4j

seems to perform shortest path queries more efficiently. Since our experiments, Sparksee has

introduced (in Version 5.2) a more efficient SinglePairShortestPathBFS operation where to

find the shortest path, a bi-directional BFS is conducted traversing both incoming and outgoing

edges simultaneously.

3.7.3.3 Deriving Other Queries

It is noteworthy that many other interesting questions can be answered by using different

combinations of the aforementioned queries in Table 3.4. As an example, suppose User A is

interested in a topic (represented by a hashtag H) and is looking for users to learn more about

the topic. Such a query can be answered combining other queries as follows:

1. Get all the hashtags that co-occur with the given hashtag H (Q3.2);

2. Get the most retweeted tweets mentioning those hashtags (Q2.3);

3. Get the original users of those retweets (given that retweets relationships is modeled in

the database), and

4. Order the users based on the shortest path length from A (Q6.1).

Similarly, User A may be recommended to topics (instead of recommending users) to tweet

based on the popular co-occuring topics used most frequently by A and his followees.

1. Get the most frequent hashtags by A (3-hop adjacency);

2. Get the most frequent hashtags by followees of A (3-hop adjacency), and

3. Get the hashtags that co-occur with hashtags above most frequently and recently (Q3.2).

Combining these queries, we can generate many new and interesting use cases that can help a

Twitter analytics task.

3.8 Discussion

In this section we summarise our findings. We also discuss open problems and opportunities

for future research.

www.manaraa.com

Discussion 61

3.8.1 Efficiency of alternate solutions

The queries in Cypher can also be written using the Neo4j API with a combination of constructs

in the traversal framework and the core API. For queries that we did translate to the API, we

observed a slight improvement in performance compared to the Cypher queries version. But the

benefit of a declarative language is lost, if they have to be re-written using the less expressible

API from scratch for performance gains. It must also be noted that significant effort was

required to translate some of the queries in the traversal description when they can be very

conveniently expressed in Cypher.

We also noticed benefit in performing query optimisations in Cypher. We observed per-

formance differences in queries (returning the same results) depending on the way they were

expressed in Cypher. For example, a recommendation query can be written in three similar

ways:

(a) going through the follows relationships for depth 2 using [:follows*2..2];

(b) collecting the intermediate results and checking them against the results at depth 2, and

(c) expanding the follows relationship to depth 2 and removing the friends at depth 1.

Method (b) performed the best. Methods (a) and (b) resulted in different execution plans,

although with a similar number of total database accesses. It was not clear why Method (c)

failed to return a result in a reasonable time. As such, some queries had to be rephrased in

order to achieve gains in performance. Ideally a query optimizer in Cypher should be converting

a query plan to a consistent set of primitives at the back end. With every new release, Cypher

is being improved with a lot of emphasis on cost-based optimizers to cater for this. While the

expressiveness is a great advantage in Cypher, an optimizer must take care in converting it to

an efficient plan based on the cost of alternate traversal plans. A good speedup can be achieved

by specifying parameters, because it allows Cypher to cache the execution plans.

On the other hand Sparksee requires sole manipulation of mainly navigation operations

(neighbors, explode) to retrieve results. Even though this gives a lot of flexibility, this might

end up in a series of expensive operations as was in the case of recommendation queries. In

Sparksee, queries can also be translated to a series of traversals using the Traversal or Context

classes. Our preliminary findings show that using the raw navigation operations (neighbors and

explode) are slightly more efficient than expressing the query as a series of traversal operations.

This is perhaps due to the overhead involved with the traversals. Sparksee can certainly also

benefit from a query language to complement its current API.

www.manaraa.com

Discussion 62

3.8.2 Overhead for aggregate operations

For many queries, users are often only interested in finding the top-n results. For example, it is

not useful to show more than 5 recommended followers for a given user. Cypher performance

increases with the removal of the additional burden of having to order the results by a count

after the grouping. Removing ordering (ORDER BY), de-duplication (DISTINCT) and limiting

the number of results returned (LIMIT) are all factors that contribute to performance gains

in Cypher. In Sparksee, in order to limit the returned results, the entire result set must be

retrieved and filtered programatically to display only the top-n rows.

3.8.3 Problems with the cold cache

We noticed that Neo4j takes a long time to warm up the caches for a new query. This time is

even longer if we do not allow the execution plans to be cached. The time taken for the first run

is significant even for queries exploring a small neighbourhood. It might not always be possible

to allow the caches to be warmed up, if a large number of queries access the cold parts of the

graph. As the degree of the source node increases, the time taken to warm the cache increases

dramatically as the system attempts to load a large portion of the graph into memory.

3.8.4 Processing keyword search on graphs

In our survey, particularly in Section 3.4.3, we encountered many studies focusing on tweet

search. In the Twittersphere, the tweet text (including its terms and hashtags) is an ideal

candidate for keyword search which requires maintaining an inverted index for efficient retrieval.

The inverted index is a simple data model to locate relevant documents on the basis of user

input terms. As mentioned before, for full-text search features, Neo4j provides access to an

external Lucene index while Sparksee’s capabilities only go as far as searching text via regular

expressions.

The studies we found in the survey maintained ad-hoc approaches to maintain and query

the corpus of tweets. Many of the existing works focused only on either tweet text or the social

graph but never both. We observe great potential in combining these two dimensions and

expressing interesting queries on both the graph and the text dimensions. More importantly,

we want to explore how well graph database systems are able to handle this type of combined

queries efficiently. Detailed investigation on this topic is available in Chapter 6.

www.manaraa.com

Summary 63

3.9 Summary

In this chapter, we first highlighted the need for new data management and query language

frameworks for Twitter. We reviewed the tweet analytics space by exploring mechanisms pri-

marily for data collection, data management and languages for querying and analyzing tweets.

In this first part, we outlined the research issues and challenges associated with integrated

solutions and propose a graph-based model for the Twittersphere.

In the second part of this chapter we investigated how well graph database systems are

able to drive the data management goals of a Twitter framework. Then we used a graph-

based model of Twitter and proposed a set of queries relevant for a microblogging applications

scenario. We chose two representative systems Neo4j and Sparksee and shared our experiences,

noting the limitations in running the microblogging queries on these data management systems.

Our contributions of this work can be summarised as follows:

• Extensive Survey: We conducted the first extensive review on existing approaches to

primarily collect, represent, manage and query Twitter data. Armed with these observa-

tions we consolidated the requirements of an integrated data management framework for

Twitter: Section 3.2—Section 3.4.

• Data Model and Queries: We proposed a data model for the Twittersphere that pro-

actively captures Twitter specific interactions and properties Section 3.5. In this model,

we suggested microblogging queries that is useful in a variety of application scenarios,

such as recommendation, co-occurrence and influence detection.

• Experiments: We conducted experiments on a large Twitter dataset, and examined

how queries performed on existing GDBMS that use graph structures to represent data

Section 3.6—Section 3.7.3.

• Lessons Learned: We shared our introspection on working with these graph database

systems and discussed open problems and opportunities for future research: Section 3.8.

www.manaraa.com

Chapter 4

Evolving Dependency Graphs for

Multi-versioned Codebases

In Chapter 3 we explored how graph database systems can be used to model a large scale

social network application such as Twitter. On this proposed model we implemented a series

of microblogging queries and observed the ability of graph systems to drive data management

goals in a social network setting. Dependencies in software source code repositories can also

be modeled as an attributed multi-graph and graph databases become a good conceptual fit

to manage and query this type of data. In this chapter we study software dependency graphs

exhibiting characteristics different to that of social networks, with hundreds of node and edge

types representing software entities. A software dependency graph can be captured for several

reasons, one useful objective is code comprehension.

Frappé, is a code comprehension tool developed by Oracle Labs that extracts the code

dependencies from a codebase and stores them in a graph database, enabling advanced code

comprehension tasks. We study this established project from industry that captures the code

dependencies and extend it to create, manage and query versioned graphs when the underlying

codebase evolves over time. Unique challenges associated with versioned graph construction in

multiple code revisions were addressed by leveraging efficient entity resolution strategies. In

this chapter we explore how a graph database system addresses these challenges and facilitate

representation, construction and querying of versioned code repositories.

64

www.manaraa.com

Introduction 65

4.1 Introduction

As the size and scope of a codebase grows, code querying and comprehension tools become

crucial in understanding and navigating tens of millions of lines of code. This is especially true

for C/C++ codebases with their complex language features and custom-built systems. Text

editors in combination with text-based tools, such as Cscope[46] and Grep, support searching

for references of a particular symbol, navigating from definition to a declaration and fuzzy text

searches. However, these text-based searches and fuzzy parsing results lack context sensitivity

and have limited knowledge of the semantics of the search symbol. Consequently, the user

needs to navigate through a large number of results to manually filter out appropriate answers.

Integrated Development Environments (IDEs) such as Eclipse have more complete compilation-

level support and also have access to a richer set of language-dependent structural information.

They are not favoured on large C/C++ codebases for reasons of build integration complexity,

performance and tradition.

It is often useful to show the relationships connecting the query symbols to better understand

the context of the symbol for purposes of debugging or further analysis. As such, capturing

the different dependencies within the source code is an important aspect of building context-

sensitive comprehension tools. Code dependencies can be naturally modelled as a dependency

graph representing call graphs, type graphs and inheritance hierarchies. Frappé [77] is a source

code querying tool developed by Oracle Labs that supports code comprehension tasks for large

C/C++ codebases. Frappé extracts graph-structured data from underlying codebases and in

addition to symbol search, is able to answer navigational queries in the form of:

• Does function X or something it calls, write to global variable Y? and,

• How much code could be affected if I change macro M?

The extracted dependency information is stored in a Neo4j [140] graph database (Detailed

in Section 2.4.3.1). Graph databases provide a platform that allows native support for code

comprehension use cases expressed as efficient graph-based queries. In Neo4j, comprehension

queries are expressed in their declarative query language Cypher.

In a collaborative software development environment, the codebases are constantly changing.

Developers are continuously adding new features, fixing bugs and refactoring code generating

new versions of the code. Frappé captures the dependency graph based on the most recent

snapshot of the codebase. Each new version of the codebase results in a modified version of the

dependency graph. Existing comprehension queries can be issued against a specific version of

www.manaraa.com

Introduction 66

the dependency graph in isolation. In this chapter, we extend Frappé, focusing on strategies

to enable advanced code comprehension when the underlying codebase evolves over time, and

queries may span multiple versions. Any tool that captures a codebase dependency graph can

benefit from our experiences in building versioned graphs for multiple revisions of the codebases.

Storing dependency graphs corresponding to each version of the source code is not an ideal

solution. In larger software projects, a significant proportion of the graph remains unchanged

and thus can have redundant information. Separate graphs also present a complex challenge

for implementing user queries that span multiple versions. Existing graph database systems do

not have in-built support for efficient storage and management of versioned graphs. As such,

end-users of graph databases need to either make copies of each different version of the data

or investigate user-defined representations of storing the deltas. A graph delta is a history of

graph differences over time, e.g. node additions and removals. In this chapter, we sought an

efficient representation of the dependency graph to store and query multiple revisions. We also

study in detail how the version graph can be built, dealing with the inherent traits of C/C++

codebases. The proposed model must be scalable and performant and be able to seamlessly

integrate the current Frappé workloads.

Existing work in generic graph evolution and management [101, 187, 177] is relevant to

our work. In many of these studies, the changeset between two graph snapshots (i.e. delta)

can be easily determined perhaps by the use of a consistent ID in all successive snapshots.

Due to the peculiarities of software entities that we discuss later in Section 4.5, determining

the equivalence of entities is a challenging task. As such, versioning of codebase dependency

graphs have unique building characteristics and pose new management and query challenges,

giving rise to new research directions in graph database systems. In studies from software

engineering research, different program meta-models [112, 169, 51] are constructed from source

code and, additionally, meta-information extracted from Source Control Management (SCM)

repositories (such as git). Our goal with extending Frappé has been to encode and version all

supported semantic information in the graph, not restricting the change information to that

directly available from the SCM. Some projects [68, 160] extract dependency graphs in varying

levels of granularity, dependent on their use case. For the current use cases of Frappé, the

dependency graph is more coarse-grained than a full Abstract Syntax Tree (AST), enabling a

storage-efficient graph-based comprehension query platform that scales to very large codebases.

In this work, we propose a model of the dependency graph representing n versions of the

codebase. On this versioned graph we are able to perform code comprehension tasks on a

version specified by the user with the added benefit of facilitating queries across versions. For

www.manaraa.com

Frappé background 67

example, we are able to view how a function has changed over the last five revisions of the code,

and thus identify and flag changes that have a wider dependency impact. We also present a

systematic study on how graph databases can facilitate versioning code dependencies in terms

of its representation, construction and query processing. Our contribution in this chapter can

be summarised as follows:

• Presents methods of conducting resolutions of entities across versions, with and without

location information.

• Using the resolutions, propose a scalable model to represent a versioned code dependency

graph capturing code evolution.

• Evaluates a large codebase (≈13 million lines of code) and show the rate of growth and

the storage benefit with a versioned graph over maintaining individual snapshots.

• Recommends new comprehension queries that can be performed as a result of the proposed

versioned graph.

4.1.1 Chapter Organisation

In this chapter we first present the background of the Frappé project in Section 4.2 including

its architecture, graph schema and code comprehension use cases. A review of relevant work

is presented in Section 4.3. In Section 4.4 we explore some possible solutions for capturing

code dependencies and introduce the proposed unified model. Node and edge resolution is an

important step in building a versioned graph and this is discussed in Section 4.5. We evaluate

our approach in Section 4.6 and discuss how the model can be further improved. Finally,

Section 4.7 evaluates existing and new representative queries on the proposed versioned graph.

4.2 Frappé background

This section introduces the background to Frappé starting with a brief description about the

architecture and how the dependency information are extracted, stored and visualized. A graph

model is explained to understand what is represented as the nodes, edges and properties of the

dependency graph. Finally, representative code comprehension queries are explained.

4.2.1 Architecture

The architecture of Frappé is shown in Figure 4.1. The wrapper scripts in the extractor run

a modified version of the Clang compiler to capture the precise dependency information from

www.manaraa.com

Frappé background 68

Figure 4.1: Frappé architecture

the source code and generate a set of intermediate .fo files for each unit of compilation. The

extracted dependencies are then imported into a graph repository. The zoomable 2D spatial

visualization available in the web UI, known as the ‘codemap’ of the query results may include

individual source entities, display paths through the code or transitive closures in the call graph.

In a code comprehension task, all this additional information gives the end-user a clear idea of

the location, locality, structure and quantity of the results which help immensely in filtering

out irrelevant results [77].

4.2.2 Graph Model

The dependency information in a codebase is encoded as a combination of nodes and edges (col-

lectively known as entities) in the Frappé graph model. A code segment and its corresponding

dependency graph is shown in Figure 4.2. The nodes of the dependency graph represent enti-

ties within the code, such as variables, functions and macros. The directed edges represent the

associations among these entities, such as calls edges between function nodes and has_param

edges between a function and parameter nodes. As shown in Figure 4.2b, the nodes and edges

originate from various data sources and at different steps of compilation. For example, mod-

ules, files and the linking information between them come from the build system; file inclusions

macro definitions, expansions and interrogation links are a result of the pre-processor ; and other

directories, source files from the file system and general symbols within the code.

In addition to the name and type attributes of the entity shown in Figure 4.2b, the database

stores further attributes on the nodes and the edges. A node of type enumerator would

have an attribute ‘value’ to denote the integer representation of the enumerator. An edge

type has_param would contain an ‘index’ attribute to indicate the position of parameter in

www.manaraa.com

Frappé background 69

 int bar(int);
foo.h

#include “foo.h”
int bar(int *input){

return *input * 2;
}

foo.c

gcc foo.c -c -o foo.o
gcc main.c foo.o -o prog

build

#include “foo.h”
int main(int argc, char **argv){

return bar(&argc);
}

main.c

12

25
26
27
28

48
49
51
52

(a) Code Segment

foo.o
module

prog
module

foo.h
source_file

bar
function_decl

bar
function

input
parameter

int
primitive

main.c
file

main
function

argv
parameter

foo.c
source_file

argc
parameter

char
primitive

linked_from

compiled_from

compiled_from

compiled_from

includes includes

file_contains

file_contains

file_contains

declarescalls

has_param has_param
has_param

is_typeis_typeis_type

(b) Dependency graph

Figure 4.2: Example of a code dependency graph

the function signature. All file_contains and reference edge types describe the location

information by a set of attributes to precisely identify the position at which an entity appears

in the underlying code. The location information stored on the edges is an important part of the

model as this information is used later for cross-referencing and visualizations in the ‘codemap’.

This location information is also crucial in distinguishing different instances of entities.

foo.c
source_file

bar
function

file_contains

file_id: 4 | start: 26 | end: 28
nameStart: 26 | nameCol: 100

Figure 4.3: Example of an edge with location information

www.manaraa.com

Frappé background 70

Each reference edge captures the ‘use’ and ‘spelling’ location (used in Clang terminology,

sometimes referred to as ‘expansion’ and ‘name’ location) of adjacent nodes (Figure 4.3). To

illustrate with the code segment in Figure 4.2a, the file_contains edge between foo.c and

bar has the following properties: (1) File Id of foo.c, (2) use location: the start and end line

numbers at which the bar function begins and ends, and (3) spelling location: the start line

number (nameStart) and column number (nameCol) which the bar name token appears in. As

we see in Section 4.5.1, the location information becomes an important modeling consideration

when the code evolves. Note that the schema of the graph does not have a one-to-one mapping

from the nodes represented in an AST – it is at a more coarse-grained level of granularity and

does not reproduce all the detailed syntactic structures in an AST.

4.2.3 Code Comprehension Queries

Using the graph model described, high-level code comprehension questions can be translated

into graph queries. Queries can range from simple index lookups to complex pattern-matching

queries that require traversing a significant portion of the dependency graph. The queries are

written using Neo4j’s query language – Cypher. A few representative categories of queries are

discussed below.

Code Search. The most common feature of any comprehension tool is its ability to quickly

search for a given symbol. Any simple text editor allows a user to search for a symbol, but that

may produce a large number of results. A more advanced IDE will allow a user to filter the

symbol by its type or the location in which it is defined given that entity types are identified

in advance. External index can be built for fast retrieval of symbols and fuzzy searches. A

user can provide additional constraints on type, attributes or the location in which a symbol is

defined so that results which are more relevant can be retrieved.

For example, to return only fields named ‘id’ present in the module preprocess.elf,

any fields that are not reachable from the node representing that module via a sequence of

file_contains, compiled_from and linked_from edges can be eliminated [77]. The code snippet

below shows this query in Cypher.

START m = node:node_auto_index(‘name: preprocess.elf’)

MATCH m -[:compiled_from|linked_from*]-> f WITH DISTINCT f

MATCH f -[:file_contains]->(n:field{name: ‘id’}) RETURN n

www.manaraa.com

Frappé background 71

Code Navigation. Another useful feature in a comprehension tool is its ability to move

between source files. Go-to-definition allows navigation from a symbol to where it is defined.

This can be done either by entering the symbol along with any conditions to filter on or

by clicking a symbol hyper-link in the visualisation. In contrast, find-references retrieves all

locations from which a given symbol is referenced and presents the user with a list to filter

further. The references are searched by returning all the incoming reference locations to a

given symbol. These navigation features facilitate the general purpose of debugging.

Both these search and navigation functionalities are staples of modern IDEs. However Frappé

can provide these functionalities for large C/C++ codebase environments where an IDE is not

available or is impractical.

Code Path Comprehension. First, shortest path queries in this category enable better

understanding of how two nodes in the graph are connected by a given edge type or that they are

not reachable at all. Second, developers are often interested in exploring how a seed statement

or a region in the code affects the rest of the code (known as a program slice [208, 182, 215]).

For example, given a seed function, the call graph can be traversed transitively to show the

impact of the function either by incoming (forward slice) or outgoing (backward slice) calls

edges. Moreover, the same affected regions can be found for source file inclusions or macro

expansions both features particularly useful in debugging.

While the above queries facilitate comprehension of large codebases, providing more context

to the user, the current model is unable to perform queries over a history of changes. Some

motivating use cases for extending Frappé with multi-versioned functionality are discussed next.

Motivating use cases for multi-versioned querying. Augmenting the current graph model

with versions enables a series of new and interesting queries over these versions. A standard

code review typically involves careful and detailed investigation of the changes that have been

made to the code over revisions. A reviewer’s job is greatly facilitated if, as a part of the code

comprehension tool, the changes, such as the function dependencies, are highlighted in advance.

Further analysis on multiple revisions, such as which areas of the code are prone to change,

how often they change, and which areas tend to change together, can all yield more insight into

the codebases.

www.manaraa.com

Related Work 72

4.3 Related Work

In this section, we discuss several categories of existing work that are closely related to versioning

of code dependencies. Relevant work originate from diverse research areas pertaining to graph

evolution, source code analysis for software evolution and projects from industry.

4.3.1 Evolving Graphs

There are many works from the graph domain addressing the general problem of evolving

graph sequences [106]. Frameworks and systems have been proposed [164, 102, 101] focusing on

efficient snapshot retrieval and analytics. Recent work [111, 187] present distributed frameworks

designed for data management of large-scale temporal graphs. LLAMA [124] focus on storage

of an evolving graph with the emphasis on data layout augmenting the compressed sparse row

representation to store mutating graphs. G* [111] takes advantage of the commonalities in

successive snapshots and stores them in compact form. None of these works are specifically

focused on the evolution of code dependency graphs which presents a set of unique challenges.

Several works stem from the field of social networks [37, 32, 105] where temporal aspects

are introduced to the graphs to enable interesting social queries over the time dimension (e.g.

historical queries). Chen et al. [37] proposed a storage model for temporal social networks and

indexes to speed up temporal queries on users, relationships and their activities. Proximity

networks are modelled in [32], where nodes represent users and edges represent timed interac-

tions between users originating from wearable sensors. Semertzidis and Pitoura [177] discuss

alternative methods of storing generic graph snapshots in a native graph database, and present

historical graph queries on it. They discuss the possibility of representing time either as an

attribute on node/edge or as a different edge type corresponding to each time-point (2012,2013

etc.). Some studies attempt to index the graph in a way that helps specific graph queries such

as the historical reachability [178] and shortest path [81, 3] queries.

Instead of consuming individual snapshots, some research [101, 105] process the graph delta.

Queries require reconstructing the graph by applying the correct delta on the current snapshot

and [105] show how the performance of historical queries can be improved by materialising

more than one snapshot, partial reconstruction and indexing deltas. DeltaGraph [101] proposes

efficient ways to retrieve a single or multiple snapshots using an hierarchical index structure of

the deltas.

Evolving graphs is the most relevant body of work although to the best of our knowledge

there has been no work specifically focused on the evolution of code dependency graphs. It

www.manaraa.com

Related Work 73

must also be noted that for all of the above-mentioned approaches, there is a known implicit

association between the entities across versions (perhaps with a persistent id), but in the code

dependency graphs we need to compute it.

4.3.2 Industry Projects

Projects have originated from industry for advanced code querying, analysis and comprehen-

sion. In addition to text-based tools such as CScope [46], several more advanced tools have

been designed through lexing and parsing the source code at different levels. IDEs are one such

example providing developers with features for basic code navigation, class browsing and refac-

toring tools. With no support for incremental indexing built-in to these tools, management

of multiple revisions of the source is up to the user; each code repository must be analysed

individually and the query results should be compared manually.

Prototype tools such as Wiggle [198] represent the graph in a graph database running

queries at a mixture of syntax-tree, type, control-flow-graph or data-flow levels. The AST

is stored and queried for several use cases, but there is no discussion about the storage cost

or query performance on individual repositories. OpenGrok [148] and Google Kythe [68] are

more large-scale projects capturing code structure in varying granularity and complexity with

different goals in mind. OpenGrok[148] is a project initiated at Oracle with the aim of providing

developers with a tool for searching and cross-referencing in various source code repositories

with support for different program file formats. OpenGrok does not build a dependency graph

in the backend–it includes parsers for several languages, maintains a text index and uses regular

expressions for search tasks. It provides support for version control histories such as Mercurial

and Git, allowing the user to select the version of the source to be indexed.

A closer match to Frappé is Google Kythe [68]. The core of the Kythe project is in defining

language-agnostic protocols and data formats for representing, accessing and querying source

code information as data. This standardisation effort provides protocols for inter-operable

developer tools. Extractors in Kythe pull compilation information from the build system, and

index the retrieved information in a language-agnostic graph. The graph is then used to answer

queries related to code browsing, review and document generation. The Kythe graph schema

captures more information than the model in Frappé, thus making the graph more complex and

querying difficult. For each new revision of the code, the repository needs a complete re-index,

possibly in parallel. For Kythe, indexing every version is an adequate solution, considering their

focus is on interoperability with cross-referencing in each version. Many of these tools from the

www.manaraa.com

Related Work 74

Software Engineering domain allow code comprehension in multiple versions in the sense that

search results may be provided as an aggregated view of results in individual repositories. In

this work, our objective is to allow cross-version querying involving de-deduplicating entities

and efficient storage.

4.3.3 Source code analysis and other program meta-models

Source code analysis and manipulation has a long standing history in software engineering

research. Some early work built tools to understand a single software repository and to query

it using declarative [153, 75, 104] and natural languages [103]. Several approaches in literature

have analysed software repositories for the purpose of understanding their evolution over time

[48]. Data is collected from different sources including versioning and bug tracking systems, the

retrieved data is modeled, stored and analysed for use cases such as change impact propagation,

hotspot analysis, developer effort and fault prediction to name a few [48]. Program meta-models

are built [112, 169, 51], adding a layer of indirection to the software at hand, with the objective

of performing different types of analysis regarding its evolution. The meta-model CHA-Q [169]

in particular persists the elements of the model in Neo4j. Since the Frappé meta-model already

builds a storage-efficient dependency graph that scales to very large codebases, we investigated

versioning the existing graph model with an emphasis on maintaining this storage scalability

without compromising the existing querying capabilities.

Many forms of query languages have also been developed to enable querying a versioned

software project in a declarative manner. In QWALKEKO [189], a git repository is directly

viewed as a graph and queried using a combination of regular path expressions and logic query

languages. ABSINTHE [98] is a general purpose tool for querying versioned software and the

history is modeled as a directed acyclic graph. SysEdMiner [137] is another tool that uses

mining algorithms on change histories with the specific goal of finding unknown systematic

edits. These approaches share a similar goal of enabling querying of versioned software. Our

objective is to build versioned graphs that can be queried with a general purpose language, but

these approaches use domain-specific languages and change information from the SCM.

4.3.4 Syntactic and Semantic Differencing

Literature on syntactic and semantic differencing is also relevant research since we need to

determine the delta of successive snapshots by identifying equivalent entities (Section 4.5).

Algorithms operate on graphs of different granularities such as program representation graphs

www.manaraa.com

Related Work 75

[80], parse trees [220] and fine-grained Program Dependency Graphs (PDG) [107] (for duplicate

code detection) thus producing varying levels of accuracy and semantics of the differences.

The coarse-grained model in Frappé introduced a storage-efficient graph model for a different

purpose of code comprehension on very large codebases. The performance and scalability of

differencing algorithms on large codebases is uncertain. For example, Dex [160] employs a graph

matching algorithm operating on ASTs and the algorithm reports a complexity of O(n4) in the

worst case: it will be expensive dealing with codebases with millions of LOC.

What sets us apart from alternative approaches?

In Table 4.1 we compare our graph-based proposed solution (Section 4.4.1.4) with the following

features of alternative approaches: (a) complexity of the model; (b) Scalability to millions of

LOC; (c) Granularity of the model and storage efficiency for a source code comprehension use

case; (d) Support for C/C++ codebases, and finally, (e) the ability to capture code changes

precisely.

Table 4.1: Feature based comparison with alternative approaches

Complexity Scalability Granularity Support Precision

Evolving graphs simple n/a n/a n/a n/a
Industry tools complex 3 7 7 3
Source code analysis complex ? 3 7 3
Differencing algorithms moderate 7 7 3 varied

Proposed Solution moderate 3 3 3 varied

The essence of our solution is to incorporate the principles of evolving graphs for versioning code

dependencies. For reasons mentioned above we cannot employ an approach that assumes the

availability of a graph delta. Instead our approach is a variation where the delta is calculated

by means of node and edge resolutions (details in Section 4.5). For most of the projects from

industry, although scalable, the model becomes too complex or the level of granularity is not

suitable for the types of code comprehension queries that we deals with. Also, in existing

approaches we have not seen particular support for C/C++ codebases. The approaches in

source code analysis evaluates much smaller codebases (100-800k entities) compared to systems

supported by Frappé (5M nodes, 80M edges). Due to the inherent complexity of the algorithms,

differencing algorithms do not scale to large graphs with millions of LOC.

www.manaraa.com

Versioning Dependency graphs 76

4.4 Versioning Dependency graphs

A ‘version’ or a ‘snapshot’ of the codebase is user-defined; incremental revisions to the code

may be distinguished in terms of commits or an aggregated set of commits, and is generally

associated with a revision number and/or a timestamp. In the rest of this chapter we use the

terms version and snapshot interchangeably to refer to a particular point in time, either in the

codebase or the corresponding dependency graph. Notations used in definitions and algorithms

are given in Table 4.2.

4.4.1 Potential solutions to versioning dependencies

We describe several methods for representing an evolving dependency graph capturing multiple

code revisions. In each of the approaches, we discuss trade-offs between implementation, storage

efficiency and query simplicity.

4.4.1.1 Autonomous storage

With an autonomous storage solution, each individual snapshot is stored independently. In

the case of querying a single instance at time point ti, the required snapshot Si can be made

available on demand. However, with this approach, queries across versions become problematic:

the results for each individual snapshot can be returned in isolation, but the answers from

disconnected snapshots would lack context, having no association between entities across the

versions. Identifying the equivalent nodes becomes a part of the query processor as these

individual snapshots are disconnected.

Another major drawback is storage inefficiency. For large codebases, autonomous storage

represents a significant storage cost with the size of each snapshot dependency graph exceeding

by orders of magnitude the size of the source codebase. To give an idea of the approximate size,

a single graph store we experiment with in this work is 12GB in size on disk (refer Table 4.4).

We need to take into account that, for nightly snapshots of a codebase, only a few files would

be changed and as a result, a major fraction of its dependency graph would remain the same.

4.4.1.2 Delta storage

In this approach, the first version of the graph is stored along with only the changeset or delta

for each new version. Instead of keeping all the contents of the subsequent versions, only the

delta is stored. The delta is a log of all the graph changes from Si to Si+1 such as the addition

www.manaraa.com

Versioning Dependency graphs 77

and removal of nodes and edges. This approach addresses the storage inefficiency of the previous

autonomous storage solution where identical parts of the graph need not be stored repeatedly

and separately. Querying the graph generally involves a two-step process: first, the required

snapshot must be reconstructed by applying the appropriate delta on it and, as a second step,

the reconstructed graph is queried. When the number of versions increase, instead of storing

only the initial version, intermediate snapshots may also be materialised.

Many studies of the graph domain [187, 101, 177] are a variation on this idea, where the

delta is implicitly known for each graph evolution. In the case of a social network, there is a

one-to-one mapping between the changeset/delta and the modification in the network, i.e. a

new friendship created directly gets translated into addition of a link between those user nodes

in the graph. In contrast, for dependency graphs we capture, particularly for C/C++ source

with pre-processor macros, the entire graph may need to be computed for a given source code

changeset. In such scenarios, identifying the delta for a changeset is one of the key challenges.

4.4.1.3 Use of an existing program meta-model

Several approaches in the software literature build program meta-models [112, 169, 51] of class-

based software systems. They support versioning incorporating sufficient information from

an AST, static and dynamic program state and version control systems, to form a first class

representation for modeling software evolution. The software systems analyzed in these ap-

proaches are substantively smaller (100-800K entities) than the systems supported by Frappé

(5M nodes, 80M edges). We do not believe these more precise encodings of evolving code graphs

will successfully scale for our use cases.

4.4.1.4 Proposed unified model

We propose the versioned graph model shown in Figure 4.4 that represents an evolving graph

while unifying and fully retaining the information of the individual snapshots. Similar designs

have been employed to model memory graphs [183] and temporal graphs [187, 105], but have

raised a unique set of challenges when applied to representing source code histories.

In this solution, we need to first identify the equivalent entities across versions; once cor-

responding nodes such as A in version 1 and version 2 are resolved (deemed equivalent), each

node and edge in the graph can hold information of the temporal version interval for which

that entity is valid (i.e. its lifespan). ver_from and ver_to denote the start and the end

version of an entity (can represent a timestamp or a revision number). In Figure 4.4, node D’s

www.manaraa.com

Versioning Dependency graphs 78

A

B C

A

C D
A

B C D

version 2

∞

∞

∞ ∞

∞

version 1

Figure 4.4: Versioned graph model with lifespan attributes on nodes and edges

ver_from = v2, as it was added in version 2. Node B and all its associated edges are denoted

by ver_to = v1, indicating that B was deleted between ver_from = v1 and ver_from = v2.

The proposed versioned graph has the following advantages.

• All the information of the individual snapshots can be succinctly captured.

• Reduces memory footprint by preserving parts of the graph that have not changed.

• Finds equivalent entities, enabling queries across several versions.

However, this solution is limited to a linear history of versions. The crucial part of this model

is determining equivalent software entities across two versions. In Section 4.5 we discuss how

we addressed these challenges. A slight variation of this model is proposed [177] in which the

lifespan is represented as multi-edges (i.e. additional edge corresponding to each timestam-

p/revision) instead of as an attribute. Although they observed faster query execution with

multi-edges, we did not opt for this approach since when we version both nodes and edges, it

would result in a graph having many more multi-edges scaling with the number of time-points

that should be recorded.

4.4.2 Preliminaries of the Unified model

A snapshot graph S can be defined as S(V,E,AV , AE) where V and E represents the nodes and

edges, and AV and AE are sets of attributes on the nodes and edges respectively. The attributes

include a specialised string label to characterise the type of the node or the edge. When the

graph evolves, a sequence of these snapshot graphs is generated. We define an evolving graph

that represents the combined union of all the individual snapshots.

www.manaraa.com

Versioning Dependency graphs 79

Table 4.2: Summary of Notations in Definitions and Algorithms

Symbol Description

G(V,E) evolving graph
Gi, Gij subgraph of G at time ti and time [ti, tj] resp.
Si(Vi, Ei) snapshot graph at time ti
AV , AE sets of attributes on nodes and edges
Ats, AverFrom attribute that holds the start time, version resp.
Ate, AverTo attribute that holds the end time, version resp.

N,R Added nodes or edges after the resolutions
idMap Dictionary of {idi : idi−1} pairs
nodeMap Dictionary of {hashkey:id} pairs for nodes
edgeMap Dictionary of {hashkey:id} pairs for edges
id(v), id(e) id of a node or edge

Definition 2 (Evolving Graph). An evolving graph G in time interval [ti, tj] (or revisions ri
to rj) is the linear collection of snapshot graphs. G = Si, Si+1, ..., Sj−1, Sj . G is characterised

by the union of all attributes of individual graphs and two temporal attributes on each node and

edge, Ats (start) and Ate (end) to denote that the entity is valid in time interval [ts, te] where

Ats(v), Ate(v) ∈ AV and Ats(e), Ate(e) ∈ AE . Until a given entity is deleted, the attribute

Ate(v) = Ate(e) =∞.

4.4.3 Queries in the Unified Model

The queries performed on these evolving graph sequences can be categorised in two main types:

queries that are performed on a single graph at a particular time point ti and queries that are

performed on a series of subgraphs valid across a given time interval [ti, tj]. A time-point query

is a query on snapshot Si. On the evolving graph, the required subgraph at time point ti, Gi
needs to be filtered before the query can be performed. A time-interval query runs on a subset

of n graphs valid in time-interval ti and tj . Formally, the two types of queries are defined as

follows.

Definition 3 (Time-point Query). The subgraph Gi at time instance ti of the evolving

graph G = (V,E,AV , AE) is defined as Gi = (Vi, Ei) where ∀v ∈ Vi : Ats(v) ≤ ti ≤ Ate(v) and

∀e ∈ Ei : Ats(e) ≤ ti ≤ Ate(e). A query that executes on subgraph Gi is a time-point query.

Definition 4 (Time-interval Query). The subgraph Gij at time interval [ti, tj], i < j

of the evolving graph G = (V,E,AV , AE) is defined as Gij = (Vij , Eij) where ∀v ∈ Vij :

www.manaraa.com

Node and Edge Resolutions 80

Ats(v) ≤ tj ∧Ate(v) ≥ ti and ∀e ∈ Eij : Ats(e) ≤ tj ∧Ate(e) ≥ ti. A query that executes on

subgraph Gij is a time-interval query.

4.5 Node and Edge Resolutions

Dependency graphs generated corresponding to two versions of the codebase are represented as

two complete graphs. It is necessary to resolve entities in the graph that are equivalent across

two graphs so they can be marked and need not be stored redundantly. In this section we discuss

methods to identify and resolve entities in our dependency graph model and demonstrate why

the location of an entity is a significant aspect of resolutions.

4.5.1 Resolution Rules

4.5.1.1 Resolutions in a single version

Before a node (or an edge) can be resolved across two versions, we need to first be able to

uniquely resolve all nodes in a single version. When a symbol is processed multiple times as

a result of multiple compilation units, Frappé already has an approach to de-duplicate such

nodes in a single version. For example, if structure A is defined in a header file and if both

foo.c and bar.c include the header file, it is de-duplicated and only a single node is created

representing the structure A irrespective of the number of times A is seen as a result of the header

file inclusions. To uniquely identify a structure, the combination of the symbol name, type,

source file in which the structure exists and use location attributes are used (Ref. Section 4.2.2

for use location). Next, we present some examples that illustrate the importance of including

location information to resolve entities.

#ifdef BLAH
 struct foo{
 int a;
 }
#else
 struct foo{
 int b;
 }
#endif

74
75
76
77
78
79
80
81
82

Figure 4.5: Challenges with the pre-processor

www.manaraa.com

Node and Edge Resolutions 81

Example 1. Figure 4.5 shows an example that highlights the importance of use location to

uniquely distinguish nodes when a pre-processor is involved. The use location of the structure

is required to uniquely distinguish it due to the pre-processor as illustrated in Figure 4.5.

Depending on whether the macro BLAH is defined, we need two different nodes created for the

structure foo; if BLAH is defined, a node must be created with ‘a’ as a field and with ‘b’ otherwise.

Use location (found on the containment edge) is added to name, type, source file attributes

to identify them as two structures. In this example, the intricacies of the pre-processor make

location an important property to distinguish nodes.

Example 2. A common local variable i may appear multiple times within the same parent.

The parent refers to the parent container (function, structure, union etc.) in which the local

variable is defined. Since the current Frappé model does not store scoping information, the

combination of symbol name, type, source file, parent id and the variable location is used to

uniquely identify a local variable. If a local variable is a part of a macro, the spelling location

(Ref. Section 4.2.2 for definition) is also required to uniquely identify it.

Table 4.3: Attributes used to resolve each NodeType apart from name and type.
Function GenerateHash(v)

NodeType Resolution attributes in addition to name,type

source_file, module,
primitive, directory –

namespace parent_id

parameter parent_id, index

macro source_fileid, start_line

local
static_local

parent_id, source_fileid, start_line, end_line,
name_start_line, name_start_column, name_fileid

other parent_id, source_fileid, start_line, signature

Table 4.3 summarises the attributes used to resolve specific node types. A hash function,

GenerateHash(v), combines these attributes. Name, type and signature are attributes on

nodes, while all others require traversing different incident edges of a node type. For example, in

order to retrieve the parent_id, respective containment edges (such as contains, has_param,

has_local) of a node must be visited and all file ids and location information are recovered from

the attributes on the file_contains edge (Figure 4.3). Once the nodes are resolved, resolving

www.manaraa.com

Node and Edge Resolutions 82

the edges is fairly straightforward. Frappé graph model is a multi-graph having multiple edges

between the same source destination nodes; thus source, destination, edge type combination is

not sufficient to uniquely identify an edge. Therefore all the attributes on an edge, including

location information, are used to uniquely identify it (in function GenerateHash(e)) as it is

guaranteed to have no duplicate edges with exactly the same properties.

Once all the nodes within a single version are resolved, we define a method to resolve entities

across two versions. The same rules for a single version can be applied for multiple versions.

The only difference between distinguishing two nodes in a single version and a particular node

across versions is the notion of time. In principle, we should be able to identify them with the

same rules. In one of our experiments (Section 4.6.2) we verify the feasibility of this approach.

However, we also need to ask several fundamental questions in order to agree on the equiv-

alence of entities across versions. The effect of refactoring code in the new version may yield

different interpretations for equivalence among end-users. For example, if a parameter was

added to a function, do we identify the function to be a new one in the new version? If a

function is renamed, can we claim that the renamed function is equivalent to the function in

the previous version? The answers to these questions are goal-specific. Our objective is to

provide end-users with the right level of abstraction that satisfies a reasonable set of use cases.

In next sections, we demonstrate the extent to which we support these different use cases. In

Section 4.5.3 we discuss how we improve the model accounting for none or relative location

information. Constructing a versioned model of code dependency graphs presents a unique set

of challenges not available in other graphs and are summarised below.

• Finding the deltas. A textual change in the source files may or may not result in a change

in dependency in the corresponding graph. Thus the computation of the delta should take

place as a post-processing step involving a mechanism to first find equivalent entities.

• Storage cost of the proposed model. The current Frappé model is lightweight, storing

only the most critical components required from the build process capturing essential

semantics. Additional information such as the AST could be maintained but the cost of

storage need to be considered.

• Pre-processor. Many of the challenges associated with resolving nodes within one version

can be attributed to the pre-processor. As we have seen with examples, the structure of

the source will have very different meaning depending on the source path of conditional

compilations.

www.manaraa.com

Node and Edge Resolutions 83

• Right level of abstraction for multiple versions. Determining what makes two entities

equivalent across two versions that are acceptable to a majority of use cases is also chal-

lenging because users will have divided assessments on what the equivalence is in the case

of refactoring code.

In the following sections, we present our experiences in building a versioned dependency

graph and discuss how the above challenges were addressed in the process.

4.5.2 Versioned graph construction

Here we describe a simplified model constructing the versioned graph in Figure 4.4 and then

improve it (in the next section).

A

B C

v1 : ∞

v1 : ∞

v1 : ∞

v1 : ∞

v1 : ∞

G

Step	1:	Materialize	Base	Graph	

Step	2	and	Step	3:	Resolve	Nodes	and	edges	

Step	4:	Update	G		
and	Remove	snapshot	Si	

G	

A

B C

v1 : ∞

v1 : ∞

v1 : ∞

v1 : v1

v1 : v1

GG	
A

B C

v1 : ∞

v1 : ∞

v1 : ∞

v1 : ∞

v1 : ∞

A

C

SiGG	 Si	

Figure 4.6: Steps in constructing the versioned graph

Figure 4.6 illustrates the steps involved in building a versioned graph. In Step 1, a graph is

selected to be the base graph G = (V,E) (which later evolves with versions) and materialised

with additional node and edge attributes to represent the version interval an entity is valid in,

such that initially, ∀v ∈ V,AverFrom(v) = 1 and AverTo(v) =∞ (similarly ∀e ∈ E, AverFrom(e) =

1 and AverTo(e) = ∞) assuming base version i = 1. The base graph is incrementally updated,

with subsequent snapshot graphs incorporating the resolutions below.

Step 2 involves resolving entities and updating G with node additions and removals. Algo-

rithm 1 outlines the steps involved in resolving the nodes in the new graph Si with the base

graph G where Si is the snapshot graph for version i. Depending on the type of the node

v, GenerateHash(v) function generates a unique key with a combination of the attributes

given in Table 4.3. Hash functions are generated for each node belonging to i− 1 version graph

extracted from the base graph G and stored in nodeMap as a map of hashkeys to ids. (lines

5-9). The validity of a node in the base graph is tested in function isValid. The idMap in

www.manaraa.com

Node and Edge Resolutions 84

Algorithm 1 Node resolutions
Input: Base G = (V,E), New Si = (Vi, Ei) for version i
Output: Added nodes N , Removed nodes R, idMap
1: N ← {}, R← {V }
2: nodeMap ← {} . dictionary for <hashkey:id>pairs
3: idMap ← {} . dictionary for <idi : id(i−1)>pairs

4: /* Generate map of nodes for version i− 1 from G */
5: for v ∈ V do
6: if isValid(v, i− 1) then
7: nodeMap ← nodeMap ∪{(GenerateHash(v), id(v)}
8: end if
9: end for
10: /* Generate hash for each node in Si */
11: for v ∈ Vi do
12: key ← GenerateHash(v)
13: if key ∈ keys(nodeMap) then
14: idMap ← { id(v),nodeMap.get(key) }
15: R← Rr {v}
16: else
17: N ← N ∪ {id(v)}
18: end if
19: end for

20: function isValid(v, current_version)
21: if AverFrom (v) ≤ current_version ≤ AverTo(v) then
22: return true
23: end if
24: end function

Algorithm 1 maintains a mapping between the id attribute in Si to corresponding (differing)

ids in G, if a mapping exists. Iterating through nodes in the snapshot graph (lines 11-19), the

mapped id in base graph is retrieved from idMap to generate the key. A crucial and a less

apparent aspect of this iteration of nodes is its order – the parents must always appear and

thus be resolved before its children. For example, all source_file nodes must be resolved (and

corresponding ids included in the idMap) before function nodes are processed.

In Step 3, a similar approach is taken for resolving the edges (Algorithm 2) of the graph

using the function GenerateHash(e). In order to generate the key, when processing the edges

in Si (i.e. Ei), the same idMap output in Algorithm 1 is used to find the matching ids for source,

destination and other ids related to the edge. For example, for attributes use_file_id and

name_file_id that appear on the edge, the global id that corresponds to the previous version

(as resolved in idMap) must be used when generating the hash key.

www.manaraa.com

Node and Edge Resolutions 85

Algorithm 2 Edge resolutions
Input: Base G = (V,E), New Si = (Vi, Ei) for version i, idMap
Output: Added edges N , Removed edges R
1: N ← {}, R← {E}
2: /* Generate hash for each edge per node, in Si */
3: for v ∈ Vi do
4: edgeMap ← CreateEdgeMap(v)
5: if edgeMap is null then
6: mark all edges of v as new
7: continue
8: end if
9: for e ∈ v.getRelationships() do

10: key ← GenerateHash(e)
11: if key ∈ keys(edgeMap) then
12: R← Rr {e}
13: else
14: N ← N ∪ {id(e)}
15: end if
16: end for
17: end for

18: function createEdgeMap(v)
19: edgeMap ← {} . dictionary for <hashkey:id>pairs
20: u ← idMap.get(v)
21: if u is null then . no matching id found
22: return null
23: end if
24: for e ∈ u.getRelationships() do
25: if isValid (e, i− 1) then
26: edgeMap ← edgeMap ∪ {(GenerateHash(e), id(e)}
27: end if
28: end for
29: return edgeMap
30: end function

For each node v in the Si graph, an edgmap is created (line 4) with the corresponding

nodes’ edges in the previous version. CreateEdgeMap function (lines 18-30) does this by

first finding the corresponding global id (line 20) and creating the above map with the hash

function generatehash(e). An edgemap would not be created if a matching id was not found

in version i − 1 (lines 21,5). Otherwise, a hash is generated for each edge of Si, and checked

against the edgeMap to find if a matching edge exists.

Considering that |E| >> |V | it would be not be efficient to first generate the hashmap of

edges for version i before generating the map for version i + 1 (as we have done for nodes).

www.manaraa.com

Node and Edge Resolutions 86

Instead, as shown in Algorithm 2 without arbitrarily iterating through edge list, edges were

processed per node to exploit caching behavior for better efficiency.

After the resolution, nodes and edges that are identified to be equivalent in two versions

will continue to remain valid in the current version i being examined. Entities that no longer

exist (R) will be closed with ver_to = i − 1. Entities that do not get resolved to an entity

in the previous version(N) will be added to the graph with ver_from = i. Finally, in Step 4,

snapshot graph Si is no longer required and can be removed as all the information is captured

in G. Steps 2 and 3 are repeated until all snapshot graphs for all versions have been processed.

The node resolutions take up time complexity O(|V |) as hash function generation executes

in |V | and |Vi| (resulting in |V+Vi|) for snapshot and base graphs respectively. Edge resolution

runs in similar time complexity, resulting in the overall resolution algorithm time complexity

of O(V + E).

4.5.3 Model Improvements

The current definition of resolutions adds new nodes and edges that cannot be resolved due

to location changes. Section 4.5.1 discussed why locations are important to identify entities

precisely. This may be suitable when de-duplicating entities in a single version, but, when

considering new source versions the location information becomes highly volatile. We investigate

if resolutions can be increased when the locations are ignored without a loss in precision.

void foo(int a){
 ...
}

13

18

File foo.c in version 1 # File foo.c in version 2

void foo(int a, int b){
 ...
}

15

20

Consider a function foo in source file foo.c (version 1) with an integer parameter a. In

version 2, a new parameter b has been added and function is moved further down in the same

source file foo.c. Due to the change in location attribute, the function in version 2 will not be

matched to a function in version 1, thus a new node will be added. The resulting subgraph

is shown on the left of Figure 4.7, as the foo function in version 2 will be treated as a new

function, foo′. However, in many use cases, the user would like to see an abstraction where foo′

is a changed version of foo and not identified as a new symbol.

No Locations. In order to achieve this, we consider the subset of attributes excluding location

attributes. If there are no other functions in foo.c with the name foo, the function can be

www.manaraa.com

Node and Edge Resolutions 87

foo
1:1

fooʹ
2:∞

a aʹ b

param
1:1

param
2:∞

param
2:∞

same without
locations

foo
1:∞

a b

param
1:∞

param
2:∞

Merge
nodes + edges

Figure 4.7: Merging the nodes and edges

resolved and we can safely decide that these two foo functions are equivalent, even when the

line numbers differ. As a result, nodes foo and foo′ can be merged. Similarly, parameters a and

a′ can also be merged to create a more simplified versioned graph (right of Figure 4.7). The

lifespan attributes on the param edge will denote that parameter a is valid in both versions,

while b was introduced in version 2. Observe that as a result of merging nodes, we may lose

the information on edges connecting them: file_contains edges of foo and foo′, and param

edges of a and a′ have different values describing their locations. When merging, in order to

preserve information on edges, we propose two approaches.

1. Introduce similar edges – Without collapsing nodes, a similar edge would be introduced

between foo and foo′ and all the edges would remain intact (Figure 4.8a). Alternatively, all

the different versions of subsequent foo nodes can be connected via a single reference node

(Figure 4.8b). The advantage of the latter method is that all the different ‘versions’ of foo

would be indexed via a reference node and would not need to iteratively traverse through

similar edges.

function
2:2

function
3:3

function
1:1

similar similar

(a) Connected Similar edges

reference

function
2:2

function
3:3

function
1:1

similar similar similar

(b) Connected by a reference node

Figure 4.8: Alternate Similar edge representations

www.manaraa.com

Node and Edge Resolutions 88

2. Move location information – Another approach is to merge both node and respective edges

while the location information on the edges would be moved into separately versioned storage.

The merged edge id would contain multiple versioned records/rows corresponding to each

version. To illustrate: assuming the merged file_contains edge id is 25, the location can

be stored in two versioned records corresponding to the two (or more) versions.

edgeId | version | st_line | end_line |...
25 | v1 | 13 | 18 |...
25 | v2 | 15 | 20 |...

The latter approach requires an additional lookup on a table to retrieve any attribute on

the edge while with similar edges, information is found within the graph itself. The latter

solution is also not favorable when only a graph database is utilized for all data management

needs.

Relative Order. With the current model in Frappé, some entities cannot be resolved if we

ignore the location information entirely. For the code segment below, as the local i appears

multiple times within the same function bar, it will be impossible to distinguish them without

absolute or at least relative locations.

void bar(){
 int i;
 ...
 int i;
 ...
 int i;
}

15

24

27

void bar(){
 int i;
 ...
 int i;
 ...
 int i;
}

20

29

32

File bar.c in version 1 # File bar.c in version 2

As in the example above, taking only the name, type, source_fileid, parent_id subset cannot

distinguish the local variable i as there are three such instances. The solution we propose here

distinguishes them by the relative order as illustrated in Figure 4.9. Retrieving relative locations

require sorting the locations instances in each version and matching them in order. Note that

at this stage we assume the function bar in the two versions has been already resolved to be

equivalent functions. If the parents of these locals (i.e. bar function) are not identified to be

equivalent, we cannot match i at all. In the next section we evaluate our approaches of the

initial model a) with locations; b) ignoring locations; and c) using relative locations.

www.manaraa.com

Evaluation 89

bar

i

i

i

has_local

has_local

has_local

version 1 version 2

line#: 15

line#: 24

line#: 27

bar

i

i

i

has_local

has_local

has_local

line#: 20

line#: 32

line#: 29

match

match

match

Figure 4.9: Taking relative locations

4.6 Evaluation

In this section, we explore the following research questions relating to constructing the versioned

graph. Evaluation of queries in the versioned model is discussed in Section 4.7.

RQ1. What percentage of entities can be resolved with existing rules for resolutions?

RQ2. Can the entity resolution be improved by incorporating more rules to account for

changing location information?

RQ3. How fast does the graph grow and what is the storage benefit of having a versioned

graph compared to an autonomous storage solution?

Table 4.4: Dataset characteristics and description

Dataset Nodes Edges Files processed KLOC Size on Disk (+index) Description

Quake3 114,465 934,220 764 384 122 MB (+62 MB) Quake online game
OIC 5,279,131 76,909,072 13,963 13,524 7.3 GB (+4.7 GB) Large Oracle internal codebase

4.6.1 Datasets

Two datasets have been used in our analysis. We use the open source Quake3 dataset [159]

representative of a long-lived, stable, medium-sized codebase. The dependency graphs are

created from 12 snapshots of the Quake source, each using a commit that is roughly four

months apart starting from February 2014 to August 2015. The Quake codebase has a slow

rate of change, with four month intervals chosen to match a rate of change comparable to the

nightly changes of a more active codebase.

We also use an Oracle internal codebase (OIC), representing a large codebase with ap-

proximately 13,000 Kilo lines of code (KLOC) similarly is a long-lived, stable codebase with a

comparable relative rate of change. We have experimented with four nightly integration builds

www.manaraa.com

Evaluation 90

(snapshots) of this codebase. The dataset characteristics are shown in Table 4.4. KLOC are

shown as an indicator of the size of the code repository. The values include only code lines in

C/C++ source and header files and exclude any blank and comment lines. The nodes, edges,

and size on disk describe the dependency graphs that are created in Neo4j. The index includes

the name, type properties of the node and the file_id property on the edges.

Feb14 Oct14Dec14Feb15 Aug15
0

2

4

6

8

10

12

14

16

Pe
rc

en
ta

ge
 o

f N
on

-R
es

ol
ut

io
ns

Nodes Edges

(a) Non-resolutions for Quake
161004 161005 161006

0

2

4

6

8

10

12

Pe
rc

en
ta

ge
 o

f N
on

-R
es

ol
ut

io
ns

Nodes Edges

TM: number of transactions merged
from old to new version

TM = 66 TM = 31TM = 57

(b) Non-resolutions for OIC

Figure 4.10: Non-resolutions for Quake and OIC datasets

4.6.2 Resolution Evaluation

We first investigate the percentage of entities we cannot resolve (to be equivalent) across versions

using the simplified model described in Section 4.5.2. The percentage of nodes and edges that

could not be resolved in Quake and OIC databases are shown in Figure 4.10a and Figure 4.10b

respectively. The y-axis shows the percentage of non-resolutions compared to its previous

version in each dataset and the x-axis shows the version date. For example, in Figure 4.10a,

the highlighted group for Dec. 2014 denotes that 6.2% of nodes and 10.2% of edges could not

be resolved compared to its previous version in Oct. 2014. In Figure 4.10b for the Oracle

internal codebase, the bars are annotated with the number of changesets merged from the old

to the new version as an indication of code changes. Note that this model uses absolute location

information; if a function has been moved down by a couple of lines, the key combination will

not match a node in the previous version and is thus a non-resolution. The accuracy of the

www.manaraa.com

Evaluation 91

resolutions was confirmed by manual inspection on the Quake database before advancing to the

larger codebase.

161004 161005 161006
0

1

2

3

4

5

6

7

P
er

ce
nt

ag
e

of
 N

on
-R

es
ol

ut
io

ns

Original Without locations Relative Order

Figure 4.11: Non-resolutions for OIC with improved resolution strategies

Feb14 Oct14 Feb15 Aug15
0

2

4

6

8

10

12

14

Pe
rc

en
ta

ge
 o

f N
on

-R
es

ol
ut

io
ns

Original Without locations Relative Order**

**

Figure 4.12: Non-resolutions for Quake with improved resolution strategies

Next we incorporate the model improvements discussed in Section 4.5.3 and monitor how

the non-resolutions are affected. The results are presented in Figure 4.11 and Figure 4.12 for

the OIC and Quake respectively. The bars in each group show the percentage of non-resolutions

using the original definition with locations, without absolute locations and using relative order

respectively.

www.manaraa.com

Evaluation 92

For OIC, it can be observed that a large proportion (98%) can be resolved (non-resolutions,

2%) without location information. The resolutions can be refined even further by using relative

locations reducing the non-resolutions to about 0.5%. However, a limitation of this approach is

that we are unable to detect renames. For example, if a function is renamed it is considered to be

a new function. The remaining percentage of entities that could not be resolved (i.e. marked

as new nodes/edges) reflects the actual nodes and edges that were added in the subsequent

version representing code changes.

For Quake, the results show a similar trend of improved resolutions without locations and

relative orders, with the exceptions marked with an asterisk(*). It was revealed that in these

particular cases the code in Quake has been refactored specifically by upgrading third party

modules, thus replacing the module names. As a result, all child nodes that depend on these

modules will be marked as new nodes, hence there is only a minor improvement in the non-

resolutions.

Graph growth and storage benefit. The graph for the OIC codebase grew, with 4.5% more

nodes and 8.3% more edges on average added to the graph for each nightly snapshot with the

basic resolution strategy. The values for Quake are 4.8% and 7.4%. With our existing system

capability, we compare the storage benefit of the proposed unified model to independently

storing n different snapshots graphs. Storing all 4 snapshots of OIC require a total 55.9GB

compared to the 18.6GB for the unified graph, demonstrating a 66.7% reduction in storage.

For a versioned graph of 12 smaller Quake databases, an 86.1% reduction is observed.

4.6.3 Discussion

Due to the fact that we use the symbol name to resolve nodes, we are unable to handle renames;

if a function is renamed in a subsequent version, we identify that function to be a new one.

In some contexts, some may argue that the renamed function indeed needs to be regarded as

a new one. We can make use of other attributes to resolve entities: by comparing the hash

of the function source, we can conclude if two functions are identical or not, but the hashes

alone will not facilitate identifying changes. Due to the volatile nature of the locations, one

may be tempted to ignore locations altogether, but as we highlighted in Section 4.5.1, location

information plays an important role in precisely distinguishing entities even within a single

version. Alternatively, we need to store more information in the dependency graphs, such as

scoping details, hash of the source or the complete AST. Despite having to incur the additional

www.manaraa.com

Queries on Versioned Graphs 93

cost of storage, this information may also make the dependency graph more complex. This is

a trade-off that may need to be taken into account in future work.

It would be interesting to investigate more advanced resolution strategies such as [214] and

addressing the renaming problem [186]. Systematic study of exact precision and recall measures

for the resolutions is another area for future work.

4.7 Queries on Versioned Graphs

The objective of this section is to investigate how the existing and new queries will perform on

the multi-versioned graph model. Specifically, we explore the following research questions.

RQ1. What is the overhead of running current Frappé use cases as a time-point query

(Definition 3) on the versioned graph? Are the results of the versioned model correct compared

to running them on independent versions?

RQ2. As a benefit of the proposed model, what are the additional time-interval queries

(Definition 4) that can be written on the versioned graph?

4.7.1 Time-point queries

Now that we have a single versioned graph in place of n different snapshot graphs, our first

objective is to run the same use cases we had for Frappé (ref. Section 4.2.3) in the graph on a

user-specified version. We note the accuracy and performance of queries on the versioned graph

compared to running them on individual snapshots. We have selected two fundamental queries

in all the workloads: one that searches a text symbol, and another that retrieves the shortest

path between two nodes (reachability) to cover path navigations.

Version selection. When querying the unified model, we need to filter the nodes and edges

that belong only to the requested version. The search query on the versioned graph translates

to an additional condition on the node to check if the symbol is valid in a given version. An

additional constraint is added to the type of the node, to limit the number of results that are

returned. A search query in Cypher that looks up a function calculateBFS in version 5 can

be written as follows.

START n = node:node_auto_index(‘name: calculateBFS’)

MATCH (n)

WHERE n.type=‘function’ AND n.ver_from <= 5 AND x.ver_to >= 5

RETURN n

www.manaraa.com

Queries on Versioned Graphs 94

The reachability query on a versioned graph involves traversing a series of intermediate

nodes and edges, checking for conditions to filter the nodes and edges that belong only to the

requested version. Our query involves returning the path between two function nodes via calls

edges that are at a maximum of 40 hops from each other. A query in Cypher to search paths

in version 5 is given below.

START n = node(23), m = node(58)

MATCH p = shortestPath (n-[r:calls*..40]->m)

WHERE all(x IN r

WHERE x.ver_from <= 5 AND x.ver_to >= 5)

RETURN p, n, m

We show results of searching for frequent symbol ‘i’ that returns around 32K results. For

reachability, we have shown query results for two functions that are 40 hops apart. For accuracy,

we verified that for each query, the results returned querying the versioned graph are the same

as the results returned from running the query on the individual snapshots. Next, we observe

the extra overhead the additional filter adds to the current queries. The query results for

search and reachability are shown in Figure 4.13a and Figure 4.13b respectively for OIC. In

both figures, the orange bars represent the average query times over 100 runs in the versioned

graph compared to the average query times running the same query on individual snapshots

(grey bar). The query times for Quake are omitted as they are in the order of milliseconds,

making it too small to compare across snapshots.

161003 161004 161005 161006
0

10

20

30

40

50

60

70

80

90

Q
ue

ry
 T

im
e

(m
s)

snapshot graph versioned graph

(a) Search Query. Symbol = ‘i’
161003 161004 161005 161006

0

2

4

6

8

10

12

Q
ue

ry
 T

im
e

(m
s)

snapshot graph versioned graph

(b) Reachability Query. path length = 40

Figure 4.13: Time-point queries for OIC

www.manaraa.com

Queries on Versioned Graphs 95

Observing Figure 4.13a and Figure 4.13b, it can be seen that there is a small overhead

in query times due to the additional filter. However, it does not seem to increase with the

number of versions added. In future work it would be interesting to confirm this conjecture

with more data points (versions). The lifespan attributes ver_to, ver_from were not indexed

as the cardinality for each version number would be low, thus not helping the reduction of the

intermediate result set.

4.7.2 Time-interval Queries

With the entities across versions being identified, we examine the questions we can ask on the

new versioned graph. A code review is one such use case that involves results from n versions

(n ≥2). A standard code review typically involves careful and detailed investigation of the

changes that have been made to the code since the last snapshot. With the current information

available on the versioned graph, out of hundreds of functions available we are able to highlight

those that changed from one version to another. A reviewer may be interested to focus on the

highlighted functions where:

• Calls/parameters have been added and removed, and/or

• Reads and writes have been added to global variables.

With the emphasis on the changes, a reviewer can examine these functions to confirm that

there have not been constraints that are violated or that the changes made were all intentional.

version
(i-1)

version
 (i)

version
(i+1)

version
(n)….

R_LoadLightMaps

RB_MDRSurfaceAnim

CL_DemoFileName

R_LoadLightMaps

RB_MDRSurfaceAnim

CL_DemoFileName

R_LoadLightMaps

CL_DemoFileName

Parameters
+1 fileNameSize

Function calls
-1 R_VboPackTangent
+1 R_VboPackNormal

Function Calls
+2 R_ColorShiftLightingFloats
Reads global
+2 r_floatLightmap
-1 r_mapOverBrightBits

Figure 4.14: A function history showing modified functions

www.manaraa.com

Queries on Versioned Graphs 96

Although the more common scenario for a code review use case is to compare the changes

in two versions, we can easily extend the time interval to show the changes in multiple versions.

For example, with the information on versioned graphs, a user can be presented with a timeline

or history of the functions that have changed, across n versions.

Figure 4.14 shows functions that were changed between two versions in Quake graphs.

If a listed function is selected, the pre-configured or all of the changes can be highlighted.

RB_MDRSurfaceAnim function in version i shows a few changes compared to its previous version

i− 1: 2 new calls are added(+) to function R_ColorShiftLightingFloats and, 1 reads is

removed(-) from global variable r_mapOverBrightBits etc. Note that a change in function

here is characterised only by any change in connecting edges, which may not reflect some

syntactical changes to the function that the Frappé model does not store. To account for this

limitation, the function source may have to be stored within the graph.

Implementation of a function history:

F1

f7

f5

f3 f4

f6

R1

F2

calls: 1 calls:2

similarsimilarcase 4

case 3

case 2

case 1

calls: 1

calls: 1
calls:2

calls:2

Figure 4.15: Possible cases of change in function calls between two versions

As discussed in Section 4.5.3, with the introduction of similar edges with reference nodes,

we illustrate the steps in involved in extracting the above function history. Assume that F1 and

F2 correspond to a function in two versions; v1 and v2. For this example, we consider that the

function calls between these two versions are of interest. We describe the four possible cases

of modifications in Figure 4.15.

• case 1: Calls the same function f7 in both versions.

• case 2: A new call to function f6 has been added in v2.

www.manaraa.com

Queries on Versioned Graphs 97

• case 3: The call to function f5 no longer exists in v2.

• case 4: Calls function f3 and f4 that are connected by a reference node R1. This

means that f3 and f4 differ by locations, but refer to equivalent functions.

When displaying a history of a function, we are most often interested in filtering out cases 1

and 4 and showing the instances in case 2 and 3, where function calls were added and removed

moving from v1 to v2. A variation on the above cases is when there may be multiple calls

to the same function. For example, although f7 is referenced in both versions, the number of

times it has been called may differ. Whether this information is of interest is up to the user.

The following query in Cypher returns a list of function calls for both versions of F1 and F2.

MATCH (x)
WHERE ID(x) = 30
MATCH (x)-[c:calls]->(n)
WHERE c.fromId = 4
WITH x, COLLECT([n.name,COUNT(c)]) AS v1
MATCH (y)-[c:calls]->(n)
WHERE ID(y) = 40
WHERE c.fromId = 5
WITH y, from1 + COLLECT([n.name, COUNT(c)]) AS v2
UNWIND v2 AS row
WITH row[0] AS function, row[1] AS count
RETURN function, SUM(count)

(a) Cypher retrieving function calls

function, v1, v2
f3, 1, 0
f4, 0, 1
f5, 1, 0
f6, 0, 1
f7, 1, 1

(b) Query Output

Figure 4.16: Cypher Query and that retrieves function calls in two versions

Once the output above is retrieved, we can filter out (a) functions with matching function

calls (case 1) and (b) functions that are connected by reference nodes (case 4).

START n = node(99)

MATCH (n)<-[:similar]-(r:reference)-[:similar]->(x)

RETURN x

For each function node in the above output, the idea is to check if a similar node from the

other version exists in the output list. If it does, the function node pair is omitted from the

final list. If a matching similar node does not exist, and the v1 or v2 count is zero, it is denoted

as a function call addition or a removal respectively.

www.manaraa.com

Summary 98

4.8 Summary

In this chapter we described our graph-based approach to managing multiple revisions of a

codebase. All of the approaches are conducted on a graph database system demonstrating the

feasibility and performance of constructing and querying versioned graphs. The contributions

of our work is summarised below.

• Resolve entities across versions: We have shown how entities across two versions

can be resolved and discussed the extent to which the resolutions can be improved with-

out changing location details (Section 4.5). We also presented our scalable solution for

constructing the versioned graph. (Section 4.5.2).

• Experiments on a large codebase: We evaluated a real codebase consisting of around

13 million lines of code. We presented the rate of growth in the versioned graph and the

storage benefits of upto 86% as evidence of a feasible and effective solution (Section 4.6).

• Proposed queries on the versioned model: We showed that current comprehension

workloads can be easily integrated into versioned graphs with only a marginal overhead in

query time. The proposed versioned graphs also enable new use cases involving querying

across versions (Section 4.7).

Code comprehension tools need to consider the inherent revisions in codebases over time

and incorporate strategies in their underlying models to manage changes effectively, without

compromising on efficiency and performance. Our experiences with Frappé pave the way for

the development of such tools.

www.manaraa.com

Chapter 5

Edge Labeling Schemes for Graph Data

In Chapter 4 we discussed how well graph databases such as Neo4j are able to handle evolving

graphs representing software code dependencies. We explored the types of useful queries that

can be run on a versioned graph model and discussed storage benefits of the proposed model.

While the data model we choose has an effect on the efficiency of the queries, the internal graph

databases themselves take measures to facilitate efficient query processing.

Given that the throughput of many graph queries can be significantly affected by disk

performance, graph database systems need to focus on effective graph storage for optimizing

disk operations. While many graph database systems (Neo4j, Sparksee, etc.) take approaches

to define memory hierarchies for efficient query processing, in this chapter we investigate how

graph data storage can be improved at the physical level. In this work, our goal is to optimally

assign edge labels coupled with edge indices to achieve improved disk locality for efficiently

answering typical graph queries, without modification to the storage internals of the graph

system at hand.

We propose edge-labeling schemes GrdRandom and FlipInOut, to label edges with inte-

gers based on the premise that edges should be assigned integer identifiers exploiting their con-

secutiveness to a maximum degree. We provide extensive experimental analysis on real-world

graphs, and compare our proposed schemes with other labeling methods based on assigning

edge IDs in the order of insertion or even randomly, as traditionally done. We show that our

methods are efficient and result in significantly improved query I/O performance leading to

faster execution of neighborhood-related queries.

99

www.manaraa.com

Introduction 100

5.1 Introduction

By leveraging advancements in graph management tools, researchers have been able to gain

more insights by asking new questions (queries) about their graph data. While these graph

database systems enable users to effectively express their graph-based queries, users also expect

to have their queries answered as efficiently as possible. Disk performance is one of the crucial

factors affecting the throughput of many graph queries. A graph management system typically

assigns internal identifiers (IDs) to vertices and edges at insertion time to allow their fast

reference and indexing. In many systems, IDs are simply assigned based on the order of

insertion, which is typically dependent on the data source: a web graph could be labeled in the

lexicographic order of web pages, and a social network in the order in which users are crawled.

A graph is generally represented as an adjacency list or matrix. Other systems such as Sparksee

[131] and SNAP [114] also maintain a graph as list of edges, especially useful for indexing edges

with rich attributes and managing multigraphs. Representing edges of a graph is therefore an

important aspect and devising optimal representations has an impact on the performance of

such systems.

Our motivation of this work stems from optimizing such systems, in particular for improving

the efficiency of answering edge queries. For instance, given a node of a graph, a query could ask

for its k-hop neighboring attributed edges (both incoming and outgoing) which possess a value

of a particular edge attribute like the timestamp. In a friendship social network, such a query

could be finding a person’s friendship details (with both followers and followees) established at

the date of 01/01/2017. Other examples of neighborhood queries are finding mutual ties in a

co-authorship network and recommendations in a product network.

Figure 5.1 displays the retrieval of neighbourhood edge properties via edge indexes (left of

the figure), while the underlying stored data file (right of the figure) is sorted by labeled edge

IDs. The incident edges for a given node are indexed and contain pointers to the actual location

of the edge records on disk. Each edge record consists of the assigned edge ID, along with a

number of property value pairs that describes the edge. We argue that having consecutive

edge IDs (over all node neighbourhoods) ensures edges are located in closer pages on disk, thus

leading to better I/O performance for answering neighbourhood queries.

In this work, our goal is to optimally assign edge labels coupled with edge indices to achieve

improved disk locality for efficiently answering these typical graph queries, without modification

to the storage internals of the graph system at hand. While node labeling has been widely

studied, one should not overlook the related edge-labeling problems aiming at improving query

www.manaraa.com

Introduction 101

Node id

 1,4,11,16 2,3,7

Index on incident edges
on nodes

1, <p1,v1>, <p2,v2>, <p3,v3>, ...
2, <p1,v1>, <p2,v2>, <p3,v3>, …
3, <p1,v1>, <p2,v2>, <p3,v3>, …
….
8, <p1,v1>, <p2,v2>, <p3,v3>, …
9, <p1,v1>, <p2,v2>, <p3,v3>, …
…
11, <p1,v1>, <p2,v2>, <p3,v3>, …
12, <p1,v1>, <p2,v2>, <p3,v3>, …
....

Data file on disk sorted by edge id
(edge ids followed by all its properties)

Edge ids

Page 1

Page 4

Page 5

Figure 5.1: An example of indexing attributed edges.

performance of some current and future graph analysis systems that store edge lists for dif-

ferent reasons. We focus on edge-labeling schemes for directed graphs, and demonstrate that

even simple labeling of edges alone can significantly improve the performance of some typical

workloads of graph applications, by lowering the number of disk reads. Retrieving neighbor-

hood of a node is at the heart of many operations conducted on graph data. We posit that

better disk locality of outgoing and incoming edges incident to a particular vertex would result

in significant speedup of the neighborhood query, and consequently, in better execution times

for a vast majority of queries which are based on it.

We approach this problem as labeling (encoding, ordering or numbering) of edges, where

each edge in a set of edges E is given a number (an edge identifier, ID or eid) between 1 and

|E|. The encoding is performed so that outgoing and incoming edges of nodes are given eids

as consecutively as possible, thereby putting outgoing and incoming neighboring edges close

together on disk based on these eids. Most existing graph databases (Neo4j, Sparksee, etc.)

take a much more simplistic approach at dealing with the memory hierarchy than what we are

used to from relational databases. Therefore it is important to look at the physical level of

graph databases in terms of how to better manage graph data.

Figure 5.2 illustrates different edge-labeling strategies for a directed multigraph. Random

ordering as shown in Figure 5.2a cannot guarantee consecutiveness of the eids assigned to edges.

If edges are ordered by source nodes (a directed edge points from a source node to a target

node), as in Figure 5.2b, all outgoing edges from a source node are guaranteed to be assigned

www.manaraa.com

Introduction 102

1 3 2

4 6
5

12 9

7
10 8

11

13

tails

1 B1 000000000001

2 B2 000000001

3 B3 00000001001

4 B4 0000001001001

heads

3 B5 000000101101

5 B6 00000000001

6 B7 0000000100001

(a) Random order: Cin(G) = 0.4,
Cout(G) = 0.4.

1 3 2

4 6
5

7 8

11
13 9

10

12

tails

1 B1 0000001

2 B2 00000001

3 B3 0000000011

4 B4 0000000000111

heads

3 B5 0000001100101

5 B6 0000000001

6 B7 000000001001

(b) Source-based order:
Cin(G) = 0.4, Cout(G) = 1.0.

1 3 2

4 6
5

12 13

11
10 8

7

9

tails

1 B1 000000000001

2 B2 0000000000001

3 B3 00000011

4 B4 00000000111

heads

3 B5 0000000001111

5 B6 0000001

6 B7 000000011

(c) Perfect order: Cin(G) = 1.0,
Cout(G) = 1.0.

Figure 5.2: Illustration of different ordering strategies.

consecutive IDs. However an obvious drawback of this approach is that incoming edges of

target nodes are overlooked, resulting in these edges possibly scattered across a range of IDs,

undesirable for the underlying physical data storage. On the other hand, Figure 5.2c shows

a perfect edge numbering such that both incoming and outgoing edges are given consecutive

numbers. While for real graphs it is often impossible to perform such a perfect labeling, we can

attempt to maximize the overall consecutiveness.

In this chapter, we formulate edge-labeling as an optimization problem, and present two

scalable approaches, GrdRandom and FlipInOut, to label edges in a way that maximizes

the total edge consecutiveness of graph, i.e., maximize the number of sequentially labeled edges

to enable sequential storage, thereby increasing the locality of disk accesses. GrdRandom

is based on the idea that numbering should be alternated between incoming and outgoing

neighbors to strike a balance between the edge directions. FlipInOut extends this idea by

taking into account the neighborhood information, and prioritizing high-degree nodes. Our

contributions in this chapter can be summarized as follows:

• Formulation: We propose an edge consecutiveness metric on directed graphs (that takes

into account both outgoing and incoming edges) and formulate edge-labeling as a maxi-

mization problem of this metric.

• Methods: We introduce GrdRandom and FlipInOut as two edge-labeling algorithms

that focus on the balance between numbering outgoing and incoming edges.

• Experiments: We conduct extensive experiments on real graphs, and show significant

benefits of our approaches over baselines in disk I/Os and query times.

• Applications: We demonstrate a case study of our methods to be applied in streaming

graph partitioning.

www.manaraa.com

Related Work 103

We conduct experiments to evaluate disk I/O performance, and the subsequent speedup of

various graph operations (e.g. friend-of-friend queries and shortest paths). Among the systems

that index edges, we use Sparksee as a representative graph analysis system. Other systems,

such as Unicorn [47] can also take advantage of edge-labeling. Unicorn has several types of

edges (i.e., relationships among users, posts etc. in Facebook), and any index built on these

edges based on edge properties can leverage a good labeling scheme to achieve disk locality and

efficient edge indexing.

5.1.1 Chapter Organisation

In this chapter we begin by presenting existing research in Section 5.2 that is relevant to the edge

labeling problem. In Section 5.3 we first formally define our edge labeling problem and introduce

our proposed methods. We evaluate our approaches in Section 5.4 on real datasets presenting

timing, scalability and disk I/O performance of different types of fundamental queries. We

also make a connection between the consecutiveness measure we define theoretically and the

experimental page accesses. Finally in Section 5.5 we investigate an application area that can

benefit from an improved edge labeling, namely streaming graph partitioning.

5.2 Related Work

In this section we first discuss several categories of existing work that are closely related to the

edge-labeling problem, and then review the implementation of Sparksee, which stores its edges

as bitmaps on disk.

5.2.1 Node arrangement

The most relevant body of our work is node reordering – with different optimization objectives

in mind. SlashBurn [119], for example, is a recent approach for renumbering the nodes so

that the non-zero elements of the adjacency matrix are grouped together. The objective is to

maximize the number of non-zeros (i.e. smaller number of denser blocks) within a matrix block

in order to enable lower disk I/O, faster execution of matrix-based graph operations and better

compression. SlashBurn investigates the ‘no good cut’ problem [119] for power law graphs

and propose techniques for node reordering. The nodes are reordered such that matrix has

smaller number of denser blocks facilitating lower disk I/O and better compression. Shingle

Ordering [41] groups similar nodes to form dense communities by exploiting the link reciprocity

www.manaraa.com

Related Work 104

of social networks. They approach the problem as a variation of the graph bandwidth problem

[42]. It focuses on solving MLOGA and MLOGGAPA minimization problems, whereas we focus

on solving a maximization problem.

Recently there have been several studies investigating graph ordering, focused on improving

CPU cache performance. Wei et al. [207] exploits node ordering by finding an optimal permu-

tation of nodes such that it minimizes the CPU cache miss ratio. Frequency based clustering

and compressed sparse row segmenting approaches [227] have also been proposed to improve

cache performance. The basic idea of the frequency based clustering is to prioritize popular

nodes that are frequently accessed within the cache to reduce runtime overhead. Although node

reordering or relabeling can result in improved performance in many node-oriented queries, it

does not necessarily guarantee good performance for edge-oriented ones.

5.2.2 Graph compression and Space filling curves

Existing work exploits the property of locality in graphs with graph compression as a primary

objective. Early approaches have focused on compressing web graphs with similarity and local-

ity features [162], lexicographic localities [23]—later extended to social networks [41, 52]—, or a

BFS approach [10]. Recent work on compression has also experimented with different ordering

schemes [180] to improve locality. Graph summarisation approaches discussed in [121] are also

closely related to graph compression. It must be noted that compression is not our main focus,

although a benefit in compression may be a side-effect of our proposed encoding schemes.

Hilbert and other curves [136] are also closely related if we view the edge encoding problem

as a mapping of edges to IDs. Hilbert curves generate a mapping between a 1-dimensional

and a 2-dimensional space known to achieve good locality of reference. Different types of space

filling curves are widely used to index spatial objects based on proximity. Intuitively, Hilbert

curves recursively partition an (x,y) coordinate in a 2-dimensional space such that it can be

mapped to a single integer. With a different goal in mind, a recent study has adopted a

Hilbert ordering on graph edges as a way of improving the graph layout [134]. Their goal was

to compare the reported performance of graph processing systems with a comparable single

threaded implementation of the same datasets. Previous works have also used the Hilbert

orderings to improve Sparse Matrix-Vector Multiplications (SpMV) [225, 224].

In our case, for every edge we can calculate a Hilbert index using the combination of the

adjacent endpoints. We can then use this index to label the edges. The Hilbert index of an edge

is sensitive to the neighboring node labels. In the original use of the space filling curve, the two

www.manaraa.com

Related Work 105

endpoints refer to an actual (x, y) coordinate of a point in space. But in the graph space unless

the x, y node IDs are ‘close’ (distance-wise in the graph space), we cannot guarantee that the

edges will be assigned consecutive, or even close numbers.

5.2.3 Graph partitioning, Community detection and Clustering

The well-studied problem of graph partitioning is also pertinent to our work. The objective

of partitioning algorithms is to reduce the number of edges crossing partitions, i.e., edge cuts,

so that the nodes belonging to the same partition can be grouped together as a coherent

unit of storage. A multitude of partitioning algorithms have been developed over the years in

response to variations of the classic partitioning. METIS [96], one of the most widely used in

practice, belongs to the category of multi-level partitioning strategies [99, 61]; many distributed

algorithms [161, 205] work well with large graphs; DIDIC [64] and EvoCut [7] require only local

computations eliminating expensive global operations on the graph. To avoid splitting high-

degree vertices across multiple machines in a distributed setting, PowerGraph [67] proposes

greedy approaches for placing edges in machines with balanced ‘vertex-cuts’.

Community detection and clustering algorithms [34, 30, 143, 21, 151] have a very similar

objective of grouping densely connected regions of a graph (e.g. cliques and bipartite cores)

which are loosely connected with the rest of the graph.

All of these algorithms achieve some degree of locality within the graph by considering ho-

mogeneous regions in the network. One may be tempted to leverage a partitioning or clustering

approach to derive an edge numbering. For example, a method such as METIS (known to have

good edge-cuts) can be used to partition the graph, and then guide the arrangement of the

edges on disk. For instance, the inter-edges can be assigned to the partition of the source or

destination node, decided at random, while the intra-edges can be numbered in some arbitrary

sequence. However, once a node numbering (or edge placement in the case of PowerGraph

[67]) is known it is not straightforward to define a method that labels the edges in a way that

their consecutiveness is maximized. Moreover, techniques like SlashBurn and METIS operate

on undirected graphs, so only the existence of the edge is sufficient to obtain the final num-

bering. Naturally edge directionality is ignored when placing a node in a partition, cluster or

community, while for us directionality is of utmost importance.

www.manaraa.com

Related Work 106

5.2.4 Sparksee

In Section 2.4.3.2 we introduced the Sparksee graph database management system. This sys-

tems primarily store edges for query processing thus becomes the testbed in the experiments.

As detailed in Section 2.4.3.2, vertices, edges, attributes are stored internally as a combination

of compact bitmaps enabling efficient bit operations for query processing. In this section, we

reiterate and emphasize important concepts in Sparksee related to our edge-labeling problem.

Figure 5.3: Bitmaps representing relationships for a graph with edges sorted by
the source

Each vertex v ∈ V and edge e ∈ E is identified by a unique object identifier, oid ∈ Z∗. As it
is with many graph systems, its internal id generator assigns unique oids when nodes and edges

are created and in the order they are inserted. The assignments of oids create the compactness

of the variable-length sequences of 1s and 0s in bitmaps (see bitmaps B1 to B7 in Figure 5.3).

Regards to the underlying storage, bitmaps are stored under a word aligned scheme where the

bitmaps are split and aligned into 32-element chunks. Having as many consecutive 0s and 1s

also makes bitmaps compression friendly.

Let us illustrate edge labeling order and its effect on bitmaps. Figure 5.3 shows the corre-

sponding bitmaps (LSB on left) for storing relationships of a simple graph with edges sorted by

the source. The tail/head group shows the IDs of all edges of which each node is a tail/head.

Let us consider node ID 3 as an example: Node ID 3 is the tail for edges with IDs 9 and 10.

Therefore, in the bitmap for 3 in the tails group (B3), the 9th and the 10th bits are set to

one. Similarly, node ID 3 is the head for edges with IDs 7,8,11 and 13. Hence, its bitmap,

B5, has the bits 7,8,11 and 13 set to one. Notice that a different edge-labeling will result in a

different bitmap in the relationships. As illustrated in Figure 5.3, when the graph edges are

sorted by source, 1s in the tail group will be grouped together however, the 1s in the head

www.manaraa.com

Edge-labeling schemes 107

group are scattered across the bitmap requiring more pages to represent the bitmap on disk.

Consequently, a query that involves retrieving the incoming neighbors of node ID 3 will incur

more disk I/O operations. Maximizing consecutiveness of edge IDs is crucial to performance,

since achieving consecutive 1s at a maximum will allow compression of bitmaps and therefore

faster bit-level operations as well as less storage.

5.3 Edge-labeling schemes

Answering a query on a directed graph may either involve traversing through a node’s outgoing

edges, incoming edges, or a combination of both. This neighborhood query is the basis of

most graph queries, if not all, used in practice. Consider a graph-based recommendation query

on a who-follows-whom network on Twitter. Recommending users to follow to a user u may

involve finding the 2-step followees (2-hop outgoing neighbors) who u is not following (1-hop

outgoing neighbors). Moreover, in label propagation, at any round, both the incoming and

outgoing edges of a node need to be accessed as messages are exchanged between neighbors. As

such, our focus is primarily on improving the locality of the neighborhood query. Although an

optimal arrangement of the edges is dependent on the characteristics of the graph and the type

of query, retrieving the 1-hop neighborhood is fundamental to (almost) all graph operations.

Accessing neighboring edges of a node on disk requires reading pages from disk. If the

neighboring edges are placed closer together on disk, this will reduce the costly random reads

required for the fundamental neighborhood query. As such our objective is to place neighboring

edges with improved locality independent of the type of graph. In Sparksee and other systems,

this translates to assigning numbers to both outgoing and incoming edges as consecutively as

Table 5.1: Some graph related notations used in algorithms.

Symbol Description

E′ reordered set of edges in a graph
V R random permutation of the nodes V
T edge type: ‘in’ or ‘out’
T ′ an inverse edge type
L set of unlabeled edges in a graph
eids edge identifiers
NT (v) neighbors of vertex v of type T
degT (v) degree of vertex v of edge type T
Ev set of unlabeled edges incident to v
(v, x) an outgoing edge of v, or incoming edge of x
visited [T] set of visited vertices of type T

www.manaraa.com

Edge-labeling schemes 108

possible. Since there are many ways to number the edges in a graph an exhaustive search

is not feasible; we propose a ‘balanced labeling’ technique that alternately numbers edges of

opposite types (incoming and outgoing). As we confirm in the experiments, how well we can

achieve consecutiveness depends on graph characteristics and the type of query workload. In

the following, we first present the edge-labeling problem and then our proposed methods. We

provide descriptions of some graph related notations in Table 5.1.

5.3.1 Problem formulation

Let G(V,E) be a directed (multi-)graph with a set of vertices, V , and a set of edges, E.

Internally in any graph system, each vertex v ∈ V and edge e ∈ E is identified/labeled by a

unique integer ID. We consider G stored as edge lists (for reasons outlined in Section 5.1).

First, we define the edge consecutiveness metric for any vertex as follows.

Definition 5 (Edge Consecutiveness). Given a directed graph G = (V,E), and a map-

ping π : E = {u, v} → Z∗ of edges to integer eids, the incoming edge consecutiveness (in-

consecutiveness) of a vertex v, Cin(v), is defined as the total number of pairs of its incoming

edges with consecutive eids under the numbering π. Formally, letNin (v) =
{
u0, u1, . . . , udegin(v)−1

}
be the incoming neighbors list of a node v sorted in ascending numbering according to π such

that ∀i ∈ [1, degin − 1 (v)] : π (ui, v) > π (ui−1, v), then we have:

Cin (v) =

∑degin(v)−1

i=1 I (π (ui, v)− π (ui−1, v)) if degin (v) > 1

1 if degin (v) = 1

0 if degin (v) = 0

where I is an indicator function dictating the ‘consecutiveness’:

I (x) =

1 ifx = 1

0 otherwise

The boundary/special cases of Cin(v) above are when incoming degree of a node is 1 or 0. The

outgoing edge consecutiveness (out-consecutiveness) Cout(v) can be defined similarly.

Based on the above definition, for the whole graph G we naturally have two total in-

and out- consecutiveness scores, respectively:
∑

v∈V Cin (v) and
∑

v∈V Cout (v). The following

lemma upper bounds these consecutiveness values:

www.manaraa.com

Edge-labeling schemes 109

Lemma 1. For a directed graph G = (V,E), under the above consecutive labeling scheme, the

maximum values of the total in- and out- consecutiveness scores are |E|−nin and |E|−nout
respectively where nin and nout are the numbers of nodes with at least two incident edges of

their respective edge types.

Proof. In a directed graph, an edge can be both treated as incoming or outgoing depending on

its incident end points. We first focus on the type of incoming edges and partition the graph

accordingly as E = {E0, E1, ..., E|V |}, i.e. the union of all nodes {v0, v1, ...}’s incoming edges.

According to Definition 5, there are three cases of node v based on the value of its incoming

degree degin (v). Let’s fix a node vi,

• case 1) when degin (vi) > 1: we have Cin(vi) ≤ |Ei|−1;

• case 2) and 3) when degin (vi) = 1 or 0: from Definition 5, Cin(vi) = |Ei|.

Summing up these three cases of nodes over vi ∈ V and reflecting on the fact that |E|=
|E0|+|E1|+... + |E|V ||, we then have an upper bound of |E|−nin as only case 1) makes the

difference between Cin(vi) and |Ei|. The upper bound holds similarly for the total out-

consecutiveness. The lemma then follows.

With the previous consecutiveness definition, we then have the following consecutiveness opti-

mization criterion for the whole graph edge labeling.

Definition 6 (Edge-Labeling). Given a directed graph G = (V,E), the goal is to find the best

labeling π∗ = arg maxπ C (G), i.e. the ‘total’ normalized in- and out-consecutiveness of the

graph C(G) as below, is maximized:

C(G) =
1

|E|−nin

∑
v∈V

Cin(v)︸ ︷︷ ︸
Cin(G)

+
1

|E|−nout

∑
v∈V

Cout(v)︸ ︷︷ ︸
Cout(G)

(5.1)

where Cin(v), Cout(v), nin and nout were defined in Definition 5 and Lemma 1.

The scaling factors in the above consecutiveness formulation is to ensure that C(G) ∈ [0, 2], since

the maximum value of the in-consecutiveness (out-consecutiveness) of G is |E|−nin (|E|−nout).

Example 5.1. Consecutiveness of a simple graph. Let us take the graph in Figure 5.4

(same as Figure 5.2b) as an example to show how consecutiveness values are calculated in

Table 5.2. The Cin(v) and Cout(v) columns in the table display the edge consecutive values at

www.manaraa.com

Edge-labeling schemes 110

each node 1 – 6. For the whole graph, the normalized total consecutive values are therefore

Cin(G) = 0.4 and Cout(G) = 1 and overall C(G) = 1.4.

1 3 2

4 6
5

7 8

11
13 9

10

12

tails

1 B1 0000001

2 B2 00000001

3 B3 0000000011

4 B4 0000000000111

heads

3 B5 0000001100101

5 B6 0000000001

6 B7 000000001001

Figure 5.4: Graph with edges
sorted by source nodes

Node Cin(v) (x=in) Cout(v) (x=out)

1 0 1
2 0 1
3 1 1
4 0 2
5 1 0
6 0 0∑

v∈V Cx(v) 2 5
|E|−nx 7− 2 = 5 7− 2 = 5
Cx(G) 2/5 = 0.4 5/5 = 1.0

Table 5.2: Calculation example for
in- and out-consecutiveness

Note that although we focus on labeling directed graphs our schemes can be readily extended

to undirected networks as well. The theoretical maximum for perfect in-/out- consecutiveness

is 1 which means either in-/out- edges of the graph are consecutive. For a given graph G, the

out- (or in-) consecutiveness can be easily made 1 by labeling all the outgoing (or incoming)

edges of each vertex i consecutively. However, it is unlikely that even in the optimal case, both

incoming and outgoing edges can be made perfectly consecutive, because in directed graph

labeling one type of edges also labels the edges of the inverse type. For example, consider

labeling the outgoing edges of vertex A in sequence in order to improve Cout(A). Labeling

A → B and A → D with eids e1 and e2 would affect the incoming labeling of the nodes B and

D, inheriting the numbers already assigned. An intuitive attempt to maximizing C(G) is to

locally maximize Cout(v) and Cin(v) for each node v ∈ V by ‘taking turns’ in labeling edges of

opposite directions. This is the core idea of our proposed algorithms to be presented next.

5.3.2 Labeling schemes

In this section we describe the baseline methods for labeling the edges of a graph, and then

give the details of our proposed methods. Our solution seeks to maximize the consecutiveness

at each individual vertex C(v) so that local decisions greedily make progress towards the global

optimal.

www.manaraa.com

Edge-labeling schemes 111

5.3.2.1 Baselines for labeling

There are three natural ways that the edges of a graph can be ordered in the input file, inde-

pendent of the type of graph. We use the following methods to form our baselines:

• Random. The edges are listed in an order given by a random permutation.

• consecIN. The incoming edges of each node are labeled consecutively, edge IDs are sorted

over the edge target/destination nodes.

• consecOUT. The outgoing edges of each node are labeled consecutively, edge IDs are sorted

over the edge source nodes. In most of the datasets, this is also the natural ordering of the

edges.

As explained in Section 5.2, existing node reordering methods are not directly applicable in

solving our graph consecutiveness maximization problem with edge-labeling. However, corre-

lations may exist between node and edge ordering methods for serving different types of graph

queries. We leave such correlation studies for future work and instead focus on solving the

edge-labeling problem here.

5.3.2.2 Proposed Method: GrdRandom

The two baseline methods consecIN and consecOUT are biased towards labeling the respective

edge type consecutively. We propose an intuitive algorithm, GrdRandom, in which the la-

beling does not favor a single edge type. In this greedy approach we first consider a random

permutation of the nodes to inform the visit order. For each of the nodes we flip a coin to

decide if the outgoing or the incoming edges of that node should be labeled consecutively. Once

an edge is given a number, it is not changed. The idea is that we alternate between the type

of edge we number so that we do not favor a single edge type.

Algorithm 3 shows the general idea of the GrdRandom algorithm. The algorithm ran-

domly numbers the edges and can complete fairly quickly. In the case that not all edges are

labeled (due to randomness), a restart procedure can be performed for labeling unlabeled edges.

The algorithm takes O(|V |) time to run the random permutation, and performs the number

assignment in O(|E|). Therefore the complexity of the algorithm is O(|V |+|E|).

5.3.2.3 Proposed Method: FlipInOut

Our first approach, GrdRandom, is simple and easy-to-implement, and, as we show in our

experiments, it outperforms the baselines. In our proposed method, FlipInOut, we further

www.manaraa.com

Edge-labeling schemes 112

Algorithm 3 GrdRandom

Input: Graph G = (V,E)
Output: Re-labeled edge list E′

1: E′ ← {} . labeled edge list to return
2: L← E . list of unlabeled edges
3: V R ← random_permutation(V)
4: for v ∈ V R do
5: if rand() > 0.5 then T ← ‘out’ else ‘in’ end if
6: /* Ev: unlabeled edges incident to v */
7: if T == ‘out’ then . unlabeled edges
8: Ev ← {(v, x) ∈ E} ∩ L . outgoing
9: else

10: Ev ← {(x, v) ∈ E} ∩ L . incoming
11: end if
12: for e ∈ Ev do
13: E′ ← E′ ∪ {e} . edge added in order
14: L← Lr {e}
15: end for
16: exit if |L|== 0
17: end for

advance GrdRandom’s main idea, and carefully incorporate more features to consciously

improve the edge consecutiveness. We first give a simplified example of our proposed algorithm

in Figure 5.5 and then discuss its main features in detail.

Example 5.2. Illustrative Example. As shown in Figure 5.5(a), the algorithm starts with

the vertex of the highest total degree (node B) and numbers the edge type that has most

unlabeled edges. For B we start numbering its incoming edges. From the in-neighbors of B

(candidate vertices: A, E and F), it then picks the in-neighbor with the most unlabeled edges

of the inverse (flipped) edge type (i.e., edgeType = out). For each node the algorithm keeps

track of the number of unlabeled out- and in-neighbors. Node E is the selected vertex for the

next iteration as neighbor A has no more out-edges, while E has 2 (EF, EC) and F has 1 (FC). E’s

remaining outgoing edges are labeled in sequence (4(b)). Our method continues by considering

the neighbors of E and selecting the vertex with the highest unlabeled edges of edgeType = in

etc. (Figure 5.5(c)). If all neighboring nodes have their edges labeled, the algorithm restarts

with the node having highest remaining degree. After numbering C’s incoming edges, there are

no more neighbors of C that are unlabeled, hence the algorithm restarts with the only remaining

node–D.

www.manaraa.com

Edge-labeling schemes 113

D E F

A B C

D E F

A B C

D E F

A B C

D E F

A B C

(a) (b)

(c) (d)

1

3

2

Z Z ZCurrent node for which
edges are numbered

Candidate
neighboring node

Neighbor node with most unnumbered
edges of the inverse type

1

3

2

4

5

1

3

2

4

5

7

6

1

3

2

4

5

7

68

9

Figure 5.5: FlipInOut Algorithm: Example.

As more edges are labeled there are many node instances with all their neighbors labeled

which results in the algorithm to restart often. Our proposed algorithm, FlipInOut shown

in Algorithm 4, incorporates the following three main ideas with the goal of labeling edges in

both directions as consecutively as possible:

I1. Alternate. Similar to GrdRandom, at each iteration, the algorithm flips between labeling

outgoing and incoming edges (hence the name Flip-In-Out) to balance the consecutiveness. The

node visit order of FlipInOut is based on the number of unlabeled edges of the flipped type,

while GrdRandom is neighborhood agnostic. For example, if the incoming edges of a node

was the last to be labeled, FlipInOut will examine the outgoing edges of the current node’s

neighbors, and vice versa. A swap procedure explained later (after I3) ensures the continuity

in labeling.

I2. Prioritize. High-degree nodes are given high priority, and are labeled earlier in the

algorithm. As in the example, when presented with a choice, FlipInOut numbers the edges

of the highest-degree neighboring node. The intuition is that locality is especially important

for high-degree nodes; If the edges of high in- and out-degree nodes are assigned consecutive

www.manaraa.com

Edge-labeling schemes 114

Algorithm 4 FlipInOut

Input: Graph G = (V,E)
Output: Re-labeled edge list E′

1: E′ ← {} . re-labeled edge list to return
2: L← E . list of unlabeled edges
3: visited[out]← {} and visited[in]← {}

4: [v, T] = ChooseVertex(L, visited) . starting vertex
5: while |L|6= ∅ do . There are still unlabeled edges
6: /* Ev: unlabeled edges incident to v */
7: if T == ‘out’ then
8: Ev ← {(v, x) ∈ E} ∩ L . outgoing
9: else

10: Ev ← {(x, v) ∈ E} ∩ L . incoming
11: end if
12: for (x, y) in Ev do
13: L← Lr {(x, y)}
14: E′ ← E′ ∪ {(x, y)} . edge added in order
15: visited[T] ← visited[T] ∪{v}
16: degT (x)–=1; degT (y)–=1 . current degree
17: end for
18: T ← T′ . flip the edge type (‘in’ or ‘out’)

19: /* NT (v): neighbors of node v of type T*/
20: if |{(x, y) ∈ E|x ∈ NT (v)} ∩ L |6= ∅ then
21: /* Find the next vertex to visit, from v’s neighbors */
22: v = argmaxx∈NT (v)rvisited[T]{degT (x)}
23: else
24: [v, T] = ChooseVertex(L, visited)
25: end if
26: end while

27: /* Choose the new starting vertex */
28: function ChooseVertex(L, visited)
29: v = argmaxvi∈Vr{visited[T]∩visited[T’]}{degT (vi)}
30: if degout(v) > degin(v) then T ← ‘out’ else ‘in’
31: end function

numbers, a larger proportion of edges will be consecutive. As a result, it is more important

that edges incident to “popular” nodes are closer together on disk, compared to a node with

only a couple of incident edges. Any query that involves accessing the neighborhood at a depth

greater than one (e.g. shortest paths) is more likely to reach a high-degree node due to its large

www.manaraa.com

Edge-labeling schemes 115

number of connections. If the neighbors of these high-degree nodes are not close on the disk, a

query can quickly become very inefficient. We therefore seek to minimize the overall I/O cost

for accessing the graph by minimizing the I/O activity of the high-degree nodes.

I3. Terminate Early. This idea is applicable and particularly important for large graphs,

where it is common to have frequent vertex restarts after a significant portion of the edges

are labeled. For perspective, the frequent restarts problem leads to 95% slower runtime for

Flickr dataset compared to FlipInOut with early termination (1988 vs. 88 seconds). The idea

behind early termination is to differently order the last δ% of the edges. Specifically, we employ

a neighborhood-agnostic approach, which decides the visit order of the vertices with unlabeled

incident edges and terminates the ‘flipping edge’ idea. Each node v is represented as a set of

at most two pairs: (i) (v, degin(v)), if it has unlabeled incoming edges; and (ii) (v, degout(v)), if

it has unlabeled outgoing edges. The resulting pairs are ordered in decreasing order of degree

(in or out) to inform the order in which the vertices will be visited. Their incident edges of the

corresponding type are then labeled consecutively. In our experiments, δ = 12% achieved good

performance in the largest graphs that we used and eliminated the frequent restart problem.

The percentage δ is set once for all the remaining edges. For brevity, we have excluded the

early termination process from Algorithm 4 (the criterion on line 5 would change to |L|> δ|E|).
The alternate and prioritize steps are employed to locally maximize the individual con-

secutiveness C(v) (Equation 5.1) for each vertex v. When this greedy approach terminates, the

algorithm is making progress towards an optimal solution. As we mentioned in the alternate

step, we employ a swap procedure to ensure continuity. As described in Example 5.2, at any

given step, out of the candidate neighboring nodes, the next vertex to visit is selected based

on the number of unlabeled edges a vertex has of the flipped edge type. When the vertex is

chosen, the selected vertex inherits at least one edge from the current node. Before labeling the

edges of the selected vertex a condition is tested: If the edge connecting the current vertex and

the selected vertex (i.e., the common edge) does not have the highest edge number seen so far,

the edge number is swapped with the maximum sibling edge ID. This ensures the continuity in

numbers assigned to the inherited edge and the edges of the selected vertex that are about to

be labeled. This is another strategy to ensure that the local consecutiveness of a given node is

at the maximum.

Example 5.3. Swap procedure example. As illustrated in Figure 5.6, outgoing edges of

A are being numbered consecutively (edge IDs 11–98). Assume that in the next iteration,

node u1 will be selected, since it has the highest number of unlabeled incoming edges thus

www.manaraa.com

Experimental Evaluation 116

A

u1

u2

...

un

11

12

...

98

ux99

A

u1

u2

...

un

98

12

...

11

ux99

Figure 5.6: Swapping procedure in FlipInOut algorithm

the numbering will start at edge ID 99. Without a swap procedure, the labeling is shown on

the left of Figure 5.6 resulting in a gap of 88 between two incoming edges. A simple O(1)

check can swap the edge IDs such that all the outgoing and incoming edges will be numbered

consecutively for A and u1 respectively.

Runtime Complexity. Line 4 in Algorithm 4 spends time O(|V |). Per node v, we execute
lines 12-17 in O(deg(v)), and either line 22 or 24, which are O(deg(v)) and O(|V |), respectively.
So, FlipInOut is O(|V |+|E|+max{|E|, |V |2}). Its worst case complexity, O(|V |2), occurs only
when it keeps restarting (line 24—i.e., the graph consists of disconnected stars). In practice,

restarts happen only towards the end of the algorithm, and FlipInOut is very efficient needing

only 2.8 and 4.9 minutes to label 33M and 69M edges, respectively.

5.4 Experimental Evaluation

We conduct experiments to demonstrate the performance of our encoding methods on a variety

of real graphs. In the following subsections, we answer the questions:

• Can we speed up popular graph queries using FlipInOut edge-labeling and how does it

compare to the baselines?

• Can we observe improved disk I/O performance as a result of better locality when storing

the graph on disk?

• Do GrdRandom and FlipInOut show benefit in storage compared to a random ordering

and other baseline schemes?

Before we answer these questions, we describe the experimental setup for our analysis.

www.manaraa.com

Experimental Evaluation 117

5.4.1 Experimental Setup

Environment. The experiments were conducted on a Linux machine with 4.00GHz Intel Core

i7-4790K, 8GB of memory and 60GB SSD.

Setup. Our experiments use Sparksee 5.2 (cf. Section 5.2) for the creation of databases. Given

a dataset, node labeling is identical for all labeling methods, but the edge-labeling differs.

For every graph, a Sparksee database is created for each of the labeling methods including

the baselines—Random, consecIN, consecOUT, GrdRandom and FlipInOut. In order to

run queries on edge properties, we have augmented each of the datasets by adding randomly

generated integer attributes on all the edges, representing weight or timestamp property.

Datasets. We conduct experiments on six directed real-world graphs with edges ranging

from 100,000 to 69 million with varying characteristics, which we obtained from SNAP1 and

KONECT2. In Table 5.3 we summarize basic statistics of each graph considered. For each

dataset, we give the number of nodes and edges, the number of edges in the largest strong

connected component (LCC), the average clustering coefficient (ACC), and a short description

of the graph representation.

Table 5.3: Summary of Datasets: Number of nodes and edges, the number of edges
in the largest strong connected component (LCC), the average clustering coefficient
(ACC), and a graph description.

Dataset Nodes Edges LCC ACC Description

WikiVote 8,297 103,690 0.38 0.14 who-votes-whom
Epinions 75,879 508,837 0.87 0.14 who-trusts-whom
Slashdot 82,168 948,464 0.96 0.06 social network
WikiTalk 2,394,385 5,021,410 0.29 0.05 Wiki talk network
Flickr 2,585,568 33,140,018 0.82 0.10 social network
LiveJ 4,847,571 68,993,773 0.95 0.27 social network

5.4.2 Speedup of Queries

We perform experiments to demonstrate the speedup of some popular graph queries: (i) friend-

of-friend queries, which explore a node’s 2-hop neighborhood (ii) shortest path queries, (iii)

queries that retrieve edge properties, and (iv) queries that retrieve the entire neighborhood

at a given depth. The performance for all queries is shown in Figure 5.7. Each plot shows

the average execution time (y-axis) of running the query for 100 instances (node IDs). For a
1https://snap.stanford.edu/data/index.html
2http://konect.uni-koblenz.de

www.manaraa.com

Experimental Evaluation 118

wVote Epinions SlashDot wTalk Flickr LiveJ
101

102

103

104
T

im
e

(m
s)

 L
og

 s
ca

le
consecOUT
consecIN
Random
GrdRandom
FlipInOut

(a) FoF-out

wVote Epinions SlashDot wTalk Flickr LiveJ
100

101

102

103

104

T
im

e
(m

s)
 L

og
 s

ca
le

consecOUT
consecIN
Random
GrdRandom
FlipInOut

(b) FoF-in

wVote Epinions SlashDot wTalk Flickr LiveJ
101

102

103

104

T
im

e
(m

s)
 L

og
 s

ca
le

consecOUT
consecIN
Random
GrdRandom
FlipInOut

(c) Shortest Path

wVote Epinions SlashDot wTalk Flickr LiveJ
103

104

105

T
im

e
(m

s)
 L

og
 s

ca
le

consecOUT
consecIN
Random
GrdRandom
FlipInOut

(d) Edge-property

wVote Epinions SlashDot wTalk Flickr LiveJ
103

104

105

106

107

T
im

e
(m

s)
 L

og
 s

ca
le

consecOUT
consecIN
Random
GrdRandom
FlipInOut

(e) Neighborhood at Depth-2

Figure 5.7: Query Performance (in ms) in real networks: FlipInOut and Gr-
dRandom have the best combined performance for in- and out-specific queries.
The runtime is measured as the average execution time over 100 runs.

www.manaraa.com

Experimental Evaluation 119

dataset, the same instances (node IDs for FoF, property queries and ID pairs for shortest paths)

are used for all queries and labeling methods.

5.4.2.1 Friend-of-Friend (FoF) Queries

We perform two types of friend-of-friend queries, which explore neighborhoods at depth 2, to

inspect both directions: FoF-in and FoF-out. These two uni-directional queries are chosen to

show the behaviour of different schemes when the query is biased. For high-degree nodes these

queries involve having to traverse through a large neighborhood. The FoF query performance

for different labeling schemes is shown in Figure 5.7a-b.

We observe that for a FoF-out query (Figure 5.7a), consecOUT numbering has the lowest

execution time reported across all graphs. This is expected as consecOUT is the optimal

arrangement of edges for an FoF-out query with all outgoing edges having consecutive numbers

(Cout(G) = 1.0). However, the same query performed on a database with consecIN edge

encoding (Cin(G) ≈ 0), has performance close to that of a random ordering. Similarly, a

consecIN numbering performs best for an FoF-in query (Figure 5.7b), but performs similar

to a random ordering when running an FoF-out query. To put this in context, for the Flickr

graph, while consecOUT is 8× faster compared to consecIN for FoF-out queries, it becomes 7×
slower for FoF-in queries. Thus, consecIN and consecOUT are biased towards a single direction

(in/out, resp.) and are only suitable for the query type on which the database is built.

If the query workloads are known apriori to be only of one type, certainly these approaches

work very well. But in practice this is a strong assumption and rarely the case. Therefore,

we need methods to strike a balance between achieving locality of both incoming and outgoing

edges. Across a variety of query workloads, our approaches meet halfway between the biased

labeling and stay consistent with the best-performing methods irrespective of query type.

Observation 1. FlipInOut is closer to the best performing consecOUT for FoF-out query

(Figure 5.7a) and also closer to the best performing consecIN for FoF-in queries (Figure 5.7b).

For FlipInOut, the average relative performance improvement for FoF-out (FoF-in) queries

ranges from 36% to 76% (38% to 66%, resp.) compared to random numbering.

Although GrdRandom does not perform as well as FlipInOut, its execution is still con-

sistent across different query types. It outperforms the random and consecIN schemes for

out-specific queries, and the random and consecOUT schemes for in-specific queries. Recall

that GrdRandom was a fairly straightforward and easy-to-implement approach which gives

www.manaraa.com

Experimental Evaluation 120

acceptable results. In Section 5.4.4 we confirm that the main reason behind the better timing

in our methods is improved disk I/O operations.

5.4.2.2 Shortest Path Queries

We chose shortest path queries to represent the category of queries that employ both outgoing

and incoming edges. The shortest path from the source vertex s to the target vertex t involves

a bidirectional breadth-first strategy, which leads to significant speedup in the algorithm by

reducing the number of visited vertices. The idea is to perform a forward search from s via

its outgoing edges, and a backward search from t via its incoming edges until a common node

is processed. Thus, the query requires going through the outgoing and incoming edges of a

graph simultaneously. The shortest path query performance of all labeling methods is shown

in Figure 5.7c.

Observation 2. For shortest path queries, FlipInOut outperforms all the encoding meth-

ods, which are biased towards edges in one direction.

Thus, if a query needs to retrieve both outgoing and incoming neighbors (e.g. the optimized

shortest path query), a balanced numbering clearly results in better query performance. Overall,

the average performance improvement for FlipInOut ranges from 18% to 86% compared to

random numbering, and shows up to 7× speedup (Flickr). Upon closer inspection, we note

that for WikiVote and LiveJornal datasets, the timing difference between FlipInOut and the

fastest baseline is marginal. For WikiVote, this can be attributed to the small path lengths

between node pairs (most lengths are 1-2, and 19% of them are 0—non reachable node pairs).

In Table 5.3 we see that only a small fraction of edges–0.38 belong to the LCC thus some nodes

within the graph were not reachable.

For LiveJournal, we attribute the marginal difference to its high average clustering coefficient

(0.27) compared to other graphs. The clustering coefficient of a vertex indicates how well-

connected the neighborhood of that vertex is, and is defined as the ratio of actual edges between

neighbors over the maximum number of potential edges. If its neighbors are well-connected, it

is likely that the nodes required to perform an FoF-out, FoF-in, or a shortest path query are

already available in memory, and thus leading to low execution time.

www.manaraa.com

Experimental Evaluation 121

5.4.2.3 Edge-Property Queries

For the next set of experiments we select a pattern matching query on edges. Any query that

filters the incident edges of a node based on a given property value is an example. We use

a query that filters the incident neighborhood (both edge directions) of a given node v based

on a edge property value x. The value of x is selected such that the selectivity is around 5%-

10%. The query involves retrieving both the outgoing and incoming incident edges of v. The

edge-property query performance for the different encoding schemes is shown in Figure 5.7d.

We observe that FlipInOut numbering results in lowest average execution time across all

graphs. Similar to shortest path queries, since FlipInOut attempts to balance the numbering

it results in better performance when dealing with queries that involve incident neighborhood

irrespective of direction. Overall, the average performance improvement for FlipInOut ranges

from 10% to 78% compared to a random numbering.

Observation 3. For edge property queries, FlipInOut outperforms all the encoding meth-

ods with an average relative performance improvement ranging from 10% to 78% compared

to a random numbering.

The behavior of consecOUT and consecIN varies depending on the query mix – if nodes along

query paths of a certain depth have more (less) outgoing neighbors than incoming, consecOUT

(consecIN) would perform better.

5.4.2.4 Neighborhood Queries

The friend-of-friend queries that we investigated are uni-directional and we showed that the re-

spective consecutive labeling schemes work well when the query only explores a single direction.

Next we evaluate the behaviour of a query that explores the full neighborhood of a give node.

A neighborhood query is a fundamental operation in algorithms such as community detection,

where the direction of the neighborhood (either incoming or outgoing neighbors) is dispensable.

We consider the full-neighborhood at depth-2 and the query performance for different labeling

schemes are shown in Figure 5.7e.

We observe that for a full neighborhood query, FlipInOut has the lowest execution time fol-

lowed by either consecIN or consecOUT labeling methods. Relative performance improvement

of FlipInOut ranges from 6% to 36%, compared to its next best labeling scheme. Table 5.4

helps explain which method comes closer to FlipInOut. This table shows, as an average, the

fraction of outgoing edges to total edges for each of the datasets. As an example, the value 0.57

www.manaraa.com

Experimental Evaluation 122

Table 5.4: Percentage of average outgoing edges at depth-1 and depth-2.

avg. out at depth-1 avg. out at depth-2

WikiVote 0.55 0.58
Epinion 0.45 0.50
SlashDot 0.49 0.47
WikiTalk 0.82 0.81
Flickr 0.57 0.54
LiveJournal 0.36 0.37

for Flickr means that for a node, on average, 57% of edges are outgoing and, thus, 43% edges

are incoming. WikiTalk and LiveJournal are heavy on outgoing and incoming edges respec-

tively. As a result, in Figure 5.7e, for WikiTalk, consecOUT run time is closer to FlipInOut

than consecIN – the queries are heavy on outgoing edges, so consecOUT contributes more for

the full-neighborhood than consecIN. In Section 5.4.5 we further explain this observation with

analytical consecutiveness values for each of the methods.

Observation 4. For a full neighborhood query, FlipInOut has the lowest execution

time followed by either consecIN or consecOUT labeling methods. Relative performance

improvement of FlipInOut ranges from 6% to 36%, compared to its next best labeling

schemes.

Recall that GrdRandom on the other hand, follows a random ordering of the nodes to la-

bels. It seems that although it takes turns numbering both directions, for the full neighborhood

in most datasets, GrdRandom cannot beat the consecOUT and consecIN methods.

5.4.3 Scalability

Figure 5.8 presents the average execution time of the encoding schemes as a function of the size

of graph edges. The x-axis in the plot corresponds to the number of edges in each of the datasets

(Table 5.3) in increasing order and the y-axis to the average time in log scale. For FoF-out and

FoF-in, the dark blue star line representing FlipInOut remains consistent across the graphs

regardless of the query direction. For shortest path, edge property and neighborhood queries,

we observe FlipInOut to have lowest execution times, scaling well with graph sizes.

Observation 5. FlipInOut scales well with the size of the input graph, and its relative

improvement is robust to the graph size regardless of the edge direction in the queries.

www.manaraa.com

Experimental Evaluation 123

100k 500k 900k 5M 33M 68M
Number of edges in graph (log scale)

101

102

103

104

T
im

e
(m

s)
 (

lo
g

 s
ca

le
)

consecOUT
consecIN
Random
GrdRandom
FlipInOut

(a) FoF-out

100k 500k 900k 5M 33M 68M
Number of edges in graph (log scale)

100

101

102

103

104

T
im

e
(m

s)
 (

lo
g

 s
ca

le
)

consecOUT
consecIN
Random
GrdRandom
FlipInOut

(b) FoF-in

100k 500k 900k 5M 33M 68M
Number of edges in graph (log scale)

101

102

103

104

T
im

e
(m

s)
 (

lo
g

 s
ca

le
)

consecOUT
consecIN
Random
GrdRandom
FlipInOut

(c) Shortest Path

100k 500k 900k 5M 33M 68M
Number of edges in graph (log scale)

103

104

105

T
im

e
(m

s)
 (

lo
g

 s
ca

le
)

consecOUT
consecIN
Random
GrdRandom
FlipInOut

(d) Edge-property

100k 500k 900k 5M 33M 68M
Number of edges in graph (log scale)

103

104

105

106

107

T
im

e
(m

s)
 (

lo
g

 s
ca

le
)

consecOUT
consecIN
Random
GrdRandom
FlipInOut

(e) Neighborhood at Depth-2

Figure 5.8: Query Performance (in ms) vs. number of edges in each input graph
(log-log scale)

www.manaraa.com

Experimental Evaluation 124

As explained before, the drop in timing for the LiveJournal graph is likely related to the high

connectivity between the neighbors that are already loaded into memory.

5.4.4 Disk I/O Performance

To measure locality preservation on disk and confirm our hypothesis that better edge-labeling

improves the number of disk accesses, we monitored the disk I/O performance of each query.

In Figure 5.9 (for smaller datasets) and Figure 5.10 (for larger datasets), for each type of

query and encoding scheme, we show the total number of persistent page reads from disk (y-axis)

over 100 instances of node IDs. The disk I/O for FoF-out, FoF-in, shortest path, edge property

and neighborhood queries are shown in each row. In Figure 5.9 the query results for WikiVote,

Epinion and SlashDot are shown in columns a, b, c respectively and the same columns in

Figure 5.10 shows results for WikiTalk, Flickr and LiveJournal datasets. The reported number

of pages read refers to all the internal structures, including the indexes and actual data stored

in bitmaps. All the statistics are recorded the first time a query is run, on a cold cache.

These figures shows how the page accesses vary across different labeling schemes and their

relative differences. For FoF-out and FoF-in queries, a consecOUT and consecIN layout clearly

show a benefit consistently across all the graphs. FlipInOut is closer to the winner in each of

the respective methods. Both the shortest path and edge property queries seem to benefit from

having a more non-biased edge layout on disk. Peculiar behaviour in the LiveJournal graph

is also exhibited in these plots. Variations on these plots help explain the behaviour of query

times in the previous section.

Observation 6. The number of persistent page reads correlates with the query time of the

encoding schemes.

For WikiVote, there appears to be a big difference in the number of reads between the meth-

ods (which should affect its runtime), but the disk page reads are consistent across methods,

ranging from 15 to just 60. The small number of reads is likely due to the network’s small size—

its 100K edges can be cached. Furthermore, with the promising results shown with improved

disk I/O, we believe that the proposed labeling schemes will also be useful in a distributed

setting where the graph is partitioned across machines. Having locality in neighboring edges

would mean less communication overhead across the network.

www.manaraa.com

Experimental Evaluation 125

WikiVote (a) Epinion (b) SlashDot (c)
fr
ie
nd

-o
f-
fr
ie
nd

ou
t

consecOUT consecIN Random FlipInOut GrdRandom
15

20

25

30

35

40

45

50

55

60

N
u

m
b

er
 o

f
P

er
si

st
an

t
P

ag
es

 R
ea

d

consecOUT consecIN Random FlipInOut GrdRandom

20

40

60

80

100

120

140

160

180

200

220

N
u

m
b

er
 o

f
P

er
si

st
an

t
P

ag
es

 R
ea

d

consecOUT consecIN Random FlipInOut GrdRandom

50

100

150

200

250

300

350

N
u

m
b

er
 o

f
P

er
si

st
an

t
P

ag
es

 R
ea

d

fr
ie
nd

-o
f-
fr
ie
nd

in

consecOUT consecIN Random FlipInOut GrdRandom
15

20

25

30

35

40

45

50

55

N
u

m
b

er
 o

f
P

er
si

st
an

t
P

ag
es

 R
ea

d

consecOUT consecIN Random FlipInOut GrdRandom

40

60

80

100

120

140

160

180

200

220

N
u

m
b

er
 o

f
P

er
si

st
an

t
P

ag
es

 R
ea

d

consecOUT consecIN Random FlipInOut GrdRandom

50

100

150

200

250

300

350

N
u

m
b

er
 o

f
P

er
si

st
an

t
P

ag
es

 R
ea

d

Sh
or
te
st

P
at
h

consecOUT consecIN Random FlipInOut GrdRandom

15

20

25

30

35

40

45

N
u

m
b

er
 o

f
P

er
si

st
an

t
P

ag
es

 R
ea

d

consecOUT consecIN Random FlipInOut GrdRandom

20

40

60

80

100

120

N
u

m
b

er
 o

f
P

er
si

st
an

t
P

ag
es

 R
ea

d

consecOUT consecIN Random FlipInOut GrdRandom

20

40

60

80

100

120

140

160

180

200

220

N
u

m
b

er
 o

f
P

er
si

st
an

t
P

ag
es

 R
ea

d

E
dg

e
P
ro
pe

rt
y

consecOUT consecIN Random FlipInOut GrdRandom

26

27

28

29

30

31

32

33

34

35

N
u

m
b

er
 o

f
P

er
si

st
an

t
P

ag
es

 R
ea

d

consecOUT consecIN Random FlipInOut GrdRandom

35

40

45

50

55

60

65

N
u

m
b

er
 o

f
P

er
si

st
an

t
P

ag
es

 R
ea

d

consecOUT consecIN Random FlipInOut GrdRandom

30

40

50

60

70

80

90

N
u

m
b

er
 o

f
P

er
si

st
an

t
P

ag
es

 R
ea

d

N
ei
gh

bo
rh
oo

d
D
ep
th
-2

consecOUT consecIN Random FlipInOut GrdRandom

50

55

60

65

70

75

80

N
u

m
b

er
 o

f
P

er
si

st
an

t
P

ag
es

 R
ea

d

consecOUT consecIN Random FlipInOut GrdRandom

160

180

200

220

240

260

280

300

320

340

N
u

m
b

er
 o

f
P

er
si

st
an

t
P

ag
es

 R
ea

d

consecOUT consecIN Random FlipInOut GrdRandom

200

250

300

350

400

450

500

550

N
u

m
b

er
 o

f
P

er
si

st
an

t
P

ag
es

 R
ea

d

Figure 5.9: Disk I/O Performance of Queries Smaller Datasets

www.manaraa.com

Experimental Evaluation 126

WikiTalk (d) Flickr (e) LiveJournal (f)
fr
ie
nd

-o
f-
fr
ie
nd

ou
t

consecOUT consecIN Random FlipInOut GrdRandom

200

400

600

800

1000

1200

1400

1600
N

u
m

b
er

 o
f

P
er

si
st

an
t

P
ag

es
 R

ea
d

consecOUT consecIN Random FlipInOut GrdRandom

0

2000

4000

6000

8000

10000

N
u

m
b

er
 o

f
P

er
si

st
an

t
P

ag
es

 R
ea

d

consecOUT consecIN Random FlipInOut GrdRandom
0

2000

4000

6000

8000

10000

12000

14000

16000

N
u

m
b

er
 o

f
P

er
si

st
an

t
P

ag
es

 R
ea

d

fr
ie
nd

-o
f-
fr
ie
nd

in

consecOUT consecIN Random FlipInOut GrdRandom

0

200

400

600

800

1000

1200

1400

1600

1800

2000

N
u

m
b

er
 o

f
P

er
si

st
an

t
P

ag
es

 R
ea

d

consecOUT consecIN Random FlipInOut GrdRandom

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

N
u

m
b

er
 o

f
P

er
si

st
an

t
P

ag
es

 R
ea

d

consecOUT consecIN Random FlipInOut GrdRandom

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

N
u

m
b

er
 o

f
P

er
si

st
an

t
P

ag
es

 R
ea

d

Sh
or
te
st

P
at
h

consecOUT consecIN Random FlipInOut GrdRandom

0

100

200

300

400

500

600

700

800

N
u

m
b

er
 o

f
P

er
si

st
an

t
P

ag
es

 R
ea

d

consecOUT consecIN Random FlipInOut GrdRandom

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

N
u

m
b

er
 o

f
P

er
si

st
an

t
P

ag
es

 R
ea

d

consecOUT consecIN Random FlipInOut GrdRandom

0

2000

4000

6000

8000

10000

12000

14000

N
u

m
b

er
 o

f
P

er
si

st
an

t
P

ag
es

 R
ea

d

E
dg

e
P
ro
pe

rt
y

consecOUT consecIN Random FlipInOut GrdRandom

50

100

150

200

250

300

350

400

N
u

m
b

er
 o

f
P

er
si

st
an

t
P

ag
es

 R
ea

d

consecOUT consecIN Random FlipInOut GrdRandom

0

500

1000

1500

2000

2500

N
u

m
b

er
 o

f
P

er
si

st
an

t
P

ag
es

 R
ea

d

consecOUT consecIN Random FlipInOut GrdRandom

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

N
u

m
b

er
 o

f
P

er
si

st
an

t
P

ag
es

 R
ea

d

N
ei
gh

bo
rh
oo

d
D
ep
th
-2

consecOUT consecIN Random FlipInOut GrdRandom

1000

1500

2000

2500

3000

3500

N
u

m
b

er
 o

f
P

er
si

st
an

t
P

ag
es

 R
ea

d

consecOUT consecIN Random FlipInOut GrdRandom

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

N
u

m
b

er
 o

f
P

er
si

st
an

t
P

ag
es

 R
ea

d

#104

consecOUT consecIN Random FlipInOut GrdRandom

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

N
u

m
b

er
 o

f
P

er
si

st
an

t
P

ag
es

 R
ea

d

#104

Figure 5.10: Disk I/O Performance of Queries Larger Datasets

www.manaraa.com

Experimental Evaluation 127

5.4.4.1 Varying Page Sizes

To better understand the disk I/O performance, we evaluate it with varying page sizes. Databases

are created with varied physical page sizes 8, 16, 32, 64 (KB). For the experiments, full-

neighborhood query is run on the three larger datasets – WikiTalk, Flickr and LiveJournal and

the results are shown in Figure 5.11.

8 16 32 64
Page Size (KB)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

N
o

. o
f

P
er

si
st

an
t

P
ag

es
 R

ea
d

consecOUT
consecIN
Random
GrdRandom
FlipInOut

(a) WikiTalk

8 16 32 64
Page Size (KB)

0

1

2

3

4

5

6

7

N
o

. o
f

P
er

si
st

an
t

P
ag

es
 R

ea
d

#104

consecOUT
consecIN
Random
GrdRandom
FlipInOut

(b) Flickr

8 16 32 64
Page Size (KB)

0

0.5

1

1.5

2

2.5

3

N
o

. o
f

P
er

si
st

an
t

P
ag

es
 R

ea
d

#104

consecOUT
consecIN
Random
GrdRandom
FlipInOut

(c) LiveJournal

Figure 5.11: Varying page size for the neighborhood query

As the page size is increased from 8 to 64, the number of disk page accesses decrease. With

larger page sizes, more information can be fit per page and, thus, there are fewer page reads.

This behaviour is observed across all the datasets, but, the relative performances of the datasets

are mixed.

Observation 7. With increasing page sizes, we observe lower page reads. Although

FlipInOut has lowest page accesses across the datasets, consecOUT and consecIN becomes

close contenders for WikiTalk and LiveJournal respectively.

Recall that the neighborhood query involves accessing both incoming and outgoing neigh-

bors at 2-hops. Although FlipInOut has the lowest number of page accesses across the

datasets, consecOUT and consecIN become close contenders for WikiTalk and LiveJournal, re-

spectively. As discussed in Section 5.4.2.4, since the WikiTalk graph (LiveJournal) is heavy on

outgoing edges (incoming edges), the neighborhood query explores many outgoing (incoming)

edges and, thus, the benefit of FlipInOut becomes closer to consecOUT (consecIN) methods.

On these larger datasets, with smaller page sizes (8KB, 16KB) we note that the number of

page reads (thus timing) is significantly higher, compared to the number of page accesses (and

timing) for large page sizes.

www.manaraa.com

Experimental Evaluation 128

5.4.4.2 Disk Storage Benefit

We also compare the schemes with respect to the raw sizes of the databases they created with

the different encoding methods. As shown in Table 5.5, FlipInOut and GrdRandom achieve

comparable or better storage benefit than consecIN and consecOUT, ranging between 10%–27%

reduction compared to a database with random ordering.

Observation 8. FlipInOut and GrdRandom achieve comparable or better storage

benefit than consecIN and consecOUT, ranging between 10%–27% reduction compared to a

database with random ordering.

The reduction in size compared to a graph with consecOUT or consecIN is marginal (at most

8%). The reason is that when the edges are sorted by source (in consecOUT), the bitmaps in

the tails group (Figure 5.3) is optimal, but the disarray in the heads cancels out its storage

benefit. The low compression benefit of consecIN for WikiTalk is due to its high in-ratio

(Table 5.3), which means that many nodes have only incoming edges. In Sparksee (Section 5.2),

this translates to sparse head group bitmaps, and numbering the edges of such a graph with

consecIN is almost equivalent to a random numbering.

Table 5.5: Storage Benefit (%) compared to the Random encoding scheme. Higher
is better.

Method WikiVote Epinions SlashDot WikiTalk Flickr LiveJ

FlipInOut 19.6 19.5 23.2 15.4 26.7 26.5
GrdRandom 18.5 18.7 21.0 10.4 25.2 24.4
consecIN 19.6 16.6 18.9 1.9 24.5 24.0
consecOUT 18.5 16.9 18.5 15.0 24.6 24.1

In conclusion, our methods generally have better and balanced runtime and disk I/O per-

formance for a wide range of queries, and also have the side-benefit of better or comparable

storage benefit to the baseline encoding schemes.

5.4.5 Analytical Cost of Varying Depth Neighborhood Queries

In this section, we study the connection between an analytical cost model built on the consecu-

tiveness definition (Definition 5 and Equation 5.1) and the experimental page access numbers.

Our goal is to observe the behaviour of the page accesses we find experimentally, when the edges

encountered by a query exhibit certain consecutiveness metrics. We consider the full neighbor-

hood query, representing a query type that explores both incoming and outgoing neighbors of

a node, which is fundamental in many types of analyses. As we have seen in Section 5.4.2.4, a

www.manaraa.com

Experimental Evaluation 129

d-depth neighborhood query encounters a certain number of nodes in both directions as part

of the query execution. We can calculate an edge consecutiveness measure observed during

one query run. Having consecutive edges facilitates storing these pages sequentially. Thus,

consecutiveness becomes a dominant measure in determining the number of page accesses. The

cost relative to a given query node qx, is given by the relative cost, RC(qx):

RC(qx) =
1

2d

d∑
i=1

∑vj∈V i−1
in

Cin(vj)
|Ein(vj)−1|

|V i−1
in |

+

∑
vk∈V i−1

out

Cout(vk)
|Eout(vk)−1|

|V i−1
out |

 (5.2)

where attached to a query qx, V i
in and V i

out are the encountered incoming and outgoing

nodes sets respectively at depth i (V 0
in = V 0

out = qx); out of these encountered nodes, Ein(vj)

and Eout(vk) denote their incident respective incoming and outgoing edge sets. Cin(vj) and

Cout(vk) denote the number of consecutive incoming and outgoing pairs of edges, for nodes

vj and vk respectively. For example, for d = 1, the value of the formulation then becomes
1
2

(
Cin(qx)
|Ein(qx)−1| + Cout(qx)

|Eout(qx)−1|

)
. For convenience, the cost model is normalized in the range of

[0, 1].

The relative cost in Equation 5.2 above, is essentially the number of consecutive edges

as a fraction of total edges (both incoming and outgoing for the neighborhood query) over

the whole paths of query execution. The cost for a uni-directional query is simply derived by

ignoring either the incoming or the outgoing terms above. Observe that this formula also closely

resembles the consecutiveness definition in Equation 5.1. Then, we can estimate an average

consecutiveness number (query cost, QCavg) of n query runs as:

QCavg =
1

n

n∑
x=1

RC(qx) (5.3)

In our experimental analysis, for each labeling scheme, we also test the average page accesses

over n runs for d = 2. Figure 5.12 shows the inverse relationship between average observed

consecutiveness and the page accesses. The red line depicts the relative page accesses and the

blue line depicts the average observed consecutiveness (QCavg). In this figure, the page accesses

is taken relative to the Random labeling scheme so that can be normalized in the range [0,1].

Figure 5.12 clearly demonstrates that methods with higher consecutiveness have lower page

accesses.

www.manaraa.com

Experimental Evaluation 130

consecOUT consecIN FlipInOut Random GrdRandom
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

avg. observed consecutiveness relative page access

(a) WikiVote
consecOUT consecIN FlipInOut Random GrdRandom

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

avg. observed consecutiveness relative page access

(b) Epinions
consecOUT consecIN FlipInOut Random GrdRandom

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

avg. observed consecutiveness relative page access

(c) SlashDot

consecOUT consecIN FlipInOut Random GrdRandom
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

avg. observed consecutiveness relative page access

(d) WikiTalk
consecOUT consecIN FlipInOut Random GrdRandom

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

avg. observed consecutiveness relative page access

(e) Flickr
consecOUT consecIN FlipInOut Random GrdRandom

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

avg. observed consecutiveness relative page access

(f) LiveJournal

Figure 5.12: Inverse correlation between observed Avg. Consecutiveness vs. the
relative page accesses.

Observation 9. The higher the average consecutiveness, better performance is observed for

disk I/Os. For the neighborhood query, FlipInOut demonstrates the highest consecutiveness

(corresponding to the lowest page accesses) across all the datasets. QCavg is a good predictor

for estimating the page accesses.

For all the datasets, FlipInOut appears to have better results with the highest consecutive-

ness scores and lowest number of page accesses for neighborhood queries. With the exception of

Epinions, the calculated QCavg of consecIN and consecOUT become closer to the performance

of FlipInOut. consecIN and consecOUT also clearly behave different for two datasets Wik-

iTalk and LiveJournal which are heavy on outgoing and incoming edges respectively (as shown

in Table 5.4).

It must be noted that the consecutive edges contribute directly to the pages required to

store the edges. However the exact number of pages occupied is dependent on a variety of

factors including the compression scheme of the internal graph system. On the other hand, it

must be noted that the actual number of disk I/O for a given query is also dependent on the

caching behavior and the buffering systems in place. We leave the development of advanced

analytical cost models for the prediction of experimental page accesses as future work.

www.manaraa.com

Experimental Evaluation 131

5.4.6 Balance of Labeling

The edge consecutiveness of graph G defined in Section 5.3.1 is a combination of individual

metrics Cin(G) and Cout(G). As discussed in Section 5.3, our proposed methods attempt to

maximize the consecutiveness and have a balance between the in- and out-consecutiveness. The

method consecIN performs perfectly on the Cin(G) metric but penalizes Cout(G). Methods that

are non-biased to a single edge direction possess the property that Cin(G) ≈ Cout(G), i.e., the

balance Cin(G)/Cout(G) ≈ 1. For query workloads that are uniform with respect to accesses

of incoming and outgoing edges, it is desirable to increase total C(G) while maintaining the

balance of labeling.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Edge consecutiveness C(G)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
al

an
ce

consecOUT
consecIN
Random
FlipInOut
GrdRandom

Figure 5.13: Trade-off between consecutiveness and balance. Markers are scaled
according to graph size.

Figure 5.13 shows the trade-off between these two properties (balance on y-axis and total

graph consecutiveness on x-axis) for all labeling methods on the datasets. The markers on the

figure are scaled with the graph size. We aim to be at the upper right corner of the matrix

maximizing on both consecutiveness and balance. In the bottom right, consecIN and consec-

OUT algorithms exhibit high C(G), however fail to balance the consecutiveness. We observe

that our proposed methods are consistently placed in the upper right corner demonstrating the

desired balanced property of these algorithms.

www.manaraa.com

Application: Streaming Graph Partitioning 132

5.5 Application: Streaming Graph Partitioning

In this section we investigate an application area that can benefit from an improved edge

labeling, namely streaming graph partitioning. In the application of partitioning, our conjecture

is that if the input stream is already pre-processed to ensure locality, better performance (e.g.

lower edge cuts) can be achieved. For example, the FlipInOut edge labeling and its locality

benefits can be achieved via small modifications in the crawling procedure by leveraging the

true or estimated (via sampling) marginal degree distribution of the input graph.

We start by briefly summarizing the basics of the streaming partitioning model. For an

undirected graph G = (V,E), the vertices arrive in a stream, each with the set of its adjacent

neighbors. The goal is to divide the set of vertices into k disjoint partitions (P1, ..., Pk) such

that inter-edges, i.e., the edge cuts, are minimized. Streaming algorithms [184, 195, 144], which

focus on scalable partitioning solutions to large graphs with time and space constraints, assign

each vertex to a partition using local graph information (e.g. the existing partitions), and never

move it. Existing work, such as LDG [184] and Fennel [195], shows that the produced edge cuts

are comparable to the ones created by offline versions with access to the whole graph, such as

METIS [96].

Given that the node assignment is based on increasing amount of information (i.e., the parti-

tions at time t), the streaming order is an important consideration that affects the performance

of the greedy node assignments to partitions. Existing work in this area usually considers three

node streaming orders; Random, Breadth First Search (BFS), and Depth First Search (DFS).

The Random ordering is practical, does not involve pre-processing, and is preferred for very

large graphs.

Based on FlipInOut, we introduce a streaming graph partitioning method, FlipCut,

which is (almost) agnostic to the neighborhood of each incoming vertex. We define as k the

number of partitions with capacity C, and P (t)(i) the ith partition at time t. Unlike other

methods, which consider a streaming order of vertices, FlipCut considers one edge, (v1, v2), at

a time in the FlipInOut order, and assigns its endpoints to partitions based on the following

three rules:

1. If v1 and v2 are already assigned to partitions, FlipCut ignores the incoming edge.

2. If v1 and v2 have not been assigned to a partition yet, both of them are assigned to the

partition with the minimum load at time t, i.e., argmini∈{1,2,...,k}
|P (t)(i)|

C .

3. If only v1 is not assigned to a partition, it is assigned to the partition of its neighbor v2,

i.e., argi∈{1,2,...,k}P (t)(i)∪v2. If that partition is full, rule 2 is applied, and v1 is assigned to

www.manaraa.com

Application: Streaming Graph Partitioning 133

the current smallest partition, i.e., argmini∈{1,2,...,k}
|P (t)(i)|

C . If v2 is the only unassigned

endpoint, it is handled similarly.

In other words, the endpoints of any streaming edge dictate the order in which FlipCut will

visit the vertices. We strive to keep a set of simple rules assuming that we are already working

on an edge set that has improved locality. An advantage of FlipCut over other baselines is

that it only inspects one edge at a time, and decides on the placement of the incoming edges’

vertices without accessing the subgraph of already seen vertices. FlipCut does only one pass

over the edges of a directed graph, and thus runs in O(|E|) time.

5.5.1 Baseline Methods and Methodology

To evaluate the performance of our streaming graph partitioning method, FlipCut, with re-

spect to the percentage of edge cuts, we compare it to three state-of-the-art methods:

• BFS + LDG [184]: This is the best performing method among 3 node orderings and

7 partitioning heuristics in [184]. The nodes are being read in BFS order, and assigned to

partitions according to the Linear Deterministic Greedy (LDG) heuristic. The idea of LDG

is to assign an incoming node v to the partition with most of its neighbors, while penalizing

larger partitions and imposing size of ∼ |V |/k vertices in each partition. In order to make the

decision for a given node v, LDG looks at the partitions of all the neighbors of v.

• Random + LDG [184]: Nodes arriving in a random order is another streaming order tested

due to its simplicity and scalability to large graphs. On average, it has been observed [184] to

report comparable performance to BFS + LDG.

• Hashing [122, 95]: A node is hashed to a partition independent of the graph structure.

The vertices can be distributed evenly across the partitions and the expected fraction of edge

cuts for k ≥ 1 partitions is 1− 1
k . This technique is widely used in practice because it is simple

and can efficiently determine the partition of a node without maintaining a mapping table. The

performance of hashing also acts as a classic upper bound.

5.5.2 Results

To compare FlipCut with the baseline methods, graphs were made undirected for the LDG

baselines. As the graph size grows, it is more sensible to test with higher value for the number

of partitions, k. Thus, for small graphs, we test with partition sizes 4 and 8, and for the larger

graphs (Flickr, LiveJ) we vary k from 12 to 100.

www.manaraa.com

Application: Streaming Graph Partitioning 134

The percentage of edge cuts is shown in Table 5.6 for k = 4 and k = 8. We see that with

the exception of Epinions, LDG with BFS and random ordering exhibit similar performance,

which has been confirmed on other datasets as well [184].

Observation 10. For k = 4 partitions, FlipCut has 8% to 42% reduction in edge cuts

compared to the LDG variants, and 26%-50% reduction compared to the Hashing method.

For 8 partitions, the benefit compared to BFS+LDG becomes smaller, and is very similar

in the case of Epinions and WikiTalk. FlipCut outperforms the Hash partitioning by a large

margin, and also has potential for practical use, given that it requires observing only a single

edge at a time, without accessing the whole graph. As expected, for all the methods, the

fraction of edge cuts increases with more partitions.

Table 5.6: Percentage of edge cuts for 4 and 8 partitions. Lower (in bold) is better.
Italics indicate near-ties.

Data BFS+LDG Random+LDG FlipCut Hashing

k = 4
WikiVote 63.63 69.93 41.41 75.0
Epinions 26.94 64.98 24.87 75.0
SlashDot 63.32 65.20 36.48 75.0
WikiTalk 56.45 54.47 48.54 75.0

k = 8
WikiVote 78.35 82.09 65.73 87.5
Epinions 41.33 76.56 42.5 87.5
SlashDot 76.52 76.81 66.85 87.5
WikiTalk 62.46 64.17 63.12 87.5

Table 5.7 shows the fraction of edge cuts for Flickr and LiveJ. As done in [184], for the

larger graphs we compare our method to the natural ordering provided in the original dataset.

In addition, we also test with a random node permutation.

In the case of Flickr, our method shows a reduction in edge cuts compared to all the

other methods. For LiveJ, although the edge cuts are improved compared to the Random and

Hashing counterparts, this is not the case compared to the Natural Order + LDG. We speculate

that one reason for this discrepancy is the high clustering coefficient of LiveJ compared to the

other graphs (Table 5.3). It may have had an adverse effect on FlipCut, since it does not

use the graph structure information (other than the current edge) when deciding the vertex

assignments. We note that independent work also reports that the LiveJ graph exhibits different

www.manaraa.com

Summary 135

behavior from other social networks; Chierichetti et al. [41] focus on network compression and

claim that the natural crawl order outperforms their Shingle ordering method.

Table 5.7: Percentage of edge cuts for the largest graphs with higher number of
partitions, k. Lower (in bold) is better.

Data k Natural + LDG Random + LDG FlipCut Hashing

Flickr 12 55.85 85.45 27.04 91.7
24 61.65 89.74 54.12 95.8

LiveJ
24 41.01 87.88 63.67 95.8
50 46.99 90.56 70.16 98.0
100 51.74 92.04 75.00 99.0

This experiment shows the potential applicability of FlipCut on generating partitions

in a streaming setting. Our results are promising, as they display consistently better cuts

compared to LDG with random ordering. We emphasize that FlipInOut, which was designed

with a different goal in mind and was not optimized for reducing the edge cuts, has the side-

benefit of supporting streaming graph partitioning. Lastly, existing algorithms generally work

on undirected graphs inspecting 2|E| edges while FlipCut can produce comparable results

observing only half the edges for a directed graph.

5.6 Summary

In this chapter we proposed the problem of effective edge labeling techniques on directed graphs.

The contributions of our work can be summarised as follows.

• Formulation of edge labeling problem: We propose an edge consecutiveness met-

ric on directed graphs (that takes into account both outgoing and incoming edges) and

formulate edge-labeling as a maximization problem of this metric (Section 5.3.1). In a

query cost model (Section 5.4.5) we show the inverse relationship between the theoretical

consecutiveness measure and the average disk I/Os for a query run.

• New Algorithms: In (Section 5.3) we introduce GrdRandom and FlipInOut as two

edge-labeling algorithms that focus on the balance between numbering outgoing and in-

coming edges. These two novel and efficient edge-labeling schemes maximizes the consec-

utiveness at every individual vertex so that local decisions greedily make progress towards

the global optimal.

www.manaraa.com

Summary 136

• Experiments on real large-scale graphs: We conduct extensive experiments and

show that our edge-labeling schemes did in fact lead to significantly improved query

times and disk I/O performance by achieving a better layout and locality of edges on disk

(Section 5.4).

• Other applications of improved labeling: We demonstrate a case study of our meth-

ods to be applied in streaming graph partitioning. Based on FlipInOut, we introduced

FlipCut, an effective one-pass, neighborhood-agnostic strategy for streaming graph par-

titioning which resulted in reduced edge cuts compared to state-of-the-art methods (Sec-

tion 5.5).

www.manaraa.com

Chapter 6

Social-Textual Query Processing on

Graph Database Systems

In Chapters 3 and 4, we investigated the use of GDBMS in social network analytics and evolving

code dependency application settings respectively. We explored how existing query mechanisms

of graph database systems can express and efficiently perform interesting queries in each of

the application scenarios. In this chapter we study in detail a specific query that involves

the integration of keyword search and graph traversals. In previous chapters we made use of

different attributes that were attached to both nodes and edges of property graphs. Apart

from the standard attributes, a graph may have text associated with it in some shape or form.

For example, the social network on Facebook connecting the users has text associated with

the posts that they share, or in a co-authorship network such as DBLP there may be research

interests attached to each author.

In this chapter we investigate a new query that requires a combined graph traversal and

text search in a graph database system. In a social network context, given a query user u and

a keyword w, our objective is to retrieve k users with the highest ranking scores, measured as a

combination of their social distance to u and the relevance of the text description to the query

keyword w. We leverage graph partitioning strategies in our proposed approach to speed-up

query processing along both dimensions. We conduct experiments on real-world large graph

datasets and show benefits of our algorithm compared to several other baseline schemes.

137

www.manaraa.com

Introduction 138

6.1 Introduction

A property graph model is able to capture many of the graphs emerging from the real-world,

with different types of nodes, edges, and attributes describing them. Most of the graph-

structured data, particularly those generated from social networks, may have specialized text

attributes associated with the nodes. For example as shown in Chapter 3, in Twitter, users

are connected via the “follow” relationship and those user nodes may be associated with tweets

or hashtags they generate. Examples of text and other attributes on real-world graphs from

different domains are shown in Table 6.1. We need to treat the text attributes (terms, hashtags,

research interests) as a specialized type of attribute as queries performed on these unstructured

text items can be more complex involving relevance ranking than simple predicates on other

attributes returning exact answers.

Table 6.1: Nodes, Edges and text attributes of graphs from different domains.

NodeType (Attributes) Text attributes EdgeTypes (from-to)

Twitter User (name, location) keywords, hashtags follows (user-user)

LinkedIn User (name, place of work, location) skills, profile summary connected (user-user)

DBLP Author (name)
Publication (title)

affiliation, research interests
abstract

cites (author-paper)
co-author(author-author)

FLARN Points of interest (coordinates x,y) POI type path (POI-POI)

Graph database systems are increasingly being used to store and manage large-scale prop-

erty graphs with complex relationships. Standard graph database systems such as Neo4j and

Sparksee are optimized for graph traversals with ‘index-free adjacencies’. Although these sys-

tems have support for indexing of attributes, there have been no comprehensive studies on how

different dimensions stored with a graph can work well together. The dimensions of a graph

can be the connectivity of the network, predicates on entities (nodes and edges) and other

textual attributes on them. For efficient query processing, these dimensions are fundamentally

supported very well by different storage models — queries on the topology by graph database

systems and specialised indices; queries on predicates by relational and key-value stores; and

queries on text search by information retrieval systems having specialized full-text indexing

schemes. Our goal is to investigate how a full-text search can be seamlessly integrated into

graph traversals within a graph database system.

The objective of graph database systems is to be able to scale graph type traversals queries

on very large graphs. Existing graph database systems such as Neo4j [140] and Titan [12]

www.manaraa.com

Introduction 139

provide support for indexing on both node and edge properties for exact search on graphs,

while full-text search capabilities are supported by an external text search engine such as

Lucene [9]. Recently, APOC procedures in Neo4j also provided enhanced features to access the

indexes. Full-text searches are not first-class citizens of graph systems and thus are not yet fully

integrated into the graph schema. However, real-world graphs and practical queries on them

demand graph database systems that can facilitate the integration of text search with graph

traversals. For example, in Twitter, if a user is looking for people interested in a particular topic,

he/she is more likely to respond to and make friends with users in his/her close neighbourhood

talking about this topic; In LinkedIn, if a professional is looking for users with a set of skills or

interests, it is easier to be introduced to suggested users who are, for example, 2-steps away.

Motivated by the requirements above, in this chapter we focus on a query that can process

graph traversal and text search in combination. We introduce a query that retrieves k objects

that are both socially close to a query user u and are textually relevant to a query keyword w.

We denote this query as a Social Textual Ranking Query (kSTRQ). This can be the basis of

queries that involve graph traversals with conditions on the structural content on the nodes.

Example 6.1. kSTRQ example. A user may be interested in finding friends who are interested

in going to the ‘Australian Open’. In Twitter, this translates to finding the top-10 users of a

user u5 (perhaps from his close neighbourhood) who have mentioned terms relevant to the query

hashtag #AusOpen. The objective of the query is to suggest 10 users who are socially close to

the query user (more likely to be friends) and who have used terms relevant to query keyword

#AusOpen. This can be answered with kSTRQ where u = u5, w = AusOpen and k = 10.

Related work on social media platforms are specifically tailored for different types of social

query workloads that are not necessarily focused on graph traversals. Facebook’s Unicorn

system [47] proposes methods for performing the ‘typeahead’ search on the social graph. The

typeahead query enables users to search other users by typing the first few characters of a

person’s name who are within his close network. The prefix search is essentially a different

query and their solution is focused on returning users from direct friends or friends-of-friends.

EarlyBird engine [27] focused on rapid data ingestion enables Twitter’s real-time search service.

In addition to other features, the ranking function only utilizes the user’s local social graph to

compute the relevance score for a Tweet. Our solution is more generic, involving a user’s n-

step neighborhood with the ability of varying the preference to each dimension thereby perfectly

complementing these prior works. Graph keyword search has been studied on RDF [192, 56, 142]

and XML [97, 90, 74] graphs which exhibit different characteristics with an output that includes

www.manaraa.com

Introduction 140

subgraphs while kSTRQ requires a ranked list of node entities. Several proposals for answering

the nearest keyword search have been studied [49, 13, 158], in which an approximate distance

between two users has been considered. Specialized index structures have been proposed in

other works [158, 86, 117] to overcome the major drawback of distance estimation errors in

approximate approaches. More details of related work are provided in Section 6.2.

Different from these approaches, we propose our algorithm PART_TA to efficiently answer

kSTRQ queries in a graph database setting, aiming at a general solution based on the graph

data model. We wish to construct a combined index along the graph and text dimensions

similar to an IR-tree [43] designed for answering spatial-textual queries. We believe that a

good graph partitioning can represent a generic solution for a graph index and we combine

this with text lists that map to the partitions. Our intuition is that this graph partitioning

approach serves as an index that can quickly find the socially close users, by placing them

within the same partition. These smaller components of the graph enable us to run kSTRQ

locally, searching for k results, traversing and expanding as few partitions as possible. Then we

assemble the results from the locally generated partitions to construct the final answer to the

kSTRQ. Our key contributions of this work can be summarized as follows.

• Methodology. We reviewed existing algorithms and adopt relevant techniques appro-

priate for a graph database setting. To the best of our knowledge, we are the first to

conduct a detailed investigation on running the kSTRQ in a graph database system.

• Algorithm. We designed an algorithm PART_TA to efficiently process kSTRQ by in-

troducing graph partitioning to optimize the use of existing techniques on a decomposed

graph.

• Experiments. We conducted experiments on three real-world datasets, Twitter, Aminer

and Flicker with different characteristics. Our proposed solution performs well on large

graphs demonstrating performance gains up to 76% compared to other baselines.

6.1.1 Chapter Organisation

The rest of the chapter is organised as follows. In Section 6.2 we review existing work relevant

to our problem. Then, in Section 6.3 we give background to the kSTRQ and provide formal

definitions of the query, relevance ranking and proximity measures. Section 6.4 introduces the

baseline approaches we implemented on a graph database system. We present our proposed

www.manaraa.com

Related Work 141

partition-based approach in Section 6.5 and discuss its variations and optimisations. Finally we

experimentally evaluate our approach and discuss our findings in Section 6.6 on real datasets.

6.2 Related Work

In this section, we discuss several categories of existing work that are closely related to the

graph keyword search problem. We present relevant work on graph-keyword query process-

ing, solutions from social media platforms and orthogonal work that integrates different query

dimensions.

6.2.1 Social Graph Queries – Twitter and Facebook

Closely related work from industry exists from research at Twitter and Facebook but are not

focused on performing graph traversals. The main focus on Twitter search as described by the

EarlyBird [27] engine, is rapid data ingestion and enables text to be immediately available for

search with real-time results. The engine performs filtering and personalization to retrieve the

most relevant results using static and dynamic signals. Static signals such as information the

user’s local social graph are added during indexing time. Dynamic signals such as the user’s

language and query timestamp also contribute to the relevance score. Unicorn [47] describes

the system for searching the social graph in Facebook and is the primary back-end for Facebook

Graph Search. It provides the primary infrastructure for Facebook’s ‘typeahead’ search which

enables users to find other users by typing the first few characters of the person’s name. The

query essentially performs a prefix search that returns a ranked list of relevant users from either

direct social circle or friends-of-friends. The social graph is partitioned (based on geographic

similarity) and also maintains postings lists for every name prefix up to a predefined character

limit. The query engine defines a set of primitives that involve fast set operations. Unicorn’s

architecture is highly customized for the particular typeahead query, scaling to large volumes of

data. In both of these platforms the frameworks are highly customized for very specific query

workloads and are not focused on graph traversals beyond a 1- or 2-step neighborhood.

6.2.2 Keyword search on graphs

Keyword search has been studied with a focus on specific types of graphs such as RDF and XML.

The knowledge bases in RDF model are represented as subject-object-predicate triples and are

queried with well defined languages such as SPARQL. Keyword search on RDF collections

www.manaraa.com

Related Work 142

[192, 56, 142] are explored to facilitate querying without having expertise on languages like

SPARQL. The general idea is that the models retrieve a set of RDF subgraphs matching a query

keyword and rank them using statistical language models which take the distribution of terms

into account. The type of workloads involve efficient retrieval of triples while our workloads are

fundamentally different. The schema defined in these corpuses may involve several thousand

different edge types, whereas in our work the node and edge types are limited. Keyword search

over XML data [97, 90, 74] has also been studied. XML data is a specialised tree-structured

graph and the keyword search returns snippets of XML documents as the query result. The

most relevant results are generally defined to be the smallest XML subtrees containing the

keywords. The focus of these existing studies is returning a subgraph while we want to retrieve

an ordered set of graph nodes.

Different from keyword search over XML, a category of related works [78, 204, 17, 100]

studied search with keywords over graphs that may not necessarily be tree structured. The

idea is to efficiently explore a graph, returning the sub-structures with distinct roots containing

query keywords. The results are ranked using a scoring function that involves node scores, the

extent of the match and edge scores reflecting the strength of the connection. Although not

operating on XML graphs, similar to keyword search over XML, these queries return graph

substructures containing the keywords. Another specialized form of a graph keyword search

query known as the typeahead query has also been investigated [47, 60] involving efficient ways

to perform prefix searches in the graph.

There have been several proposals for answering the nearest keyword search query where

an approximate distance between two users/nodes are considered [49, 13, 158]. This is the

most relevant work for our problem that is not operating on specialized graphs such as RDF

or XML. The approximate distances in the Partitioned Multi-Indexing (PMI) scheme [13] are

calculated based on ‘distance oracles’ [49] which is used to estimate the distance between two

nodes. A major drawback in this approach as observed in later studies [158, 86, 117] is that the

distance estimation error is large in practice, thus affecting the ranked result list. Alternative

tree-based strategies [158] have been proposed but they are memory-based and do not scale well

to large graphs and it is not clear how ranking in other dimensions (such as textual similarity)

can be incorporated into those schemes. Problem-specific indexes are proposed in some studies

[117, 158] and they are not easily extensible to the generic graph database system scenario we

address.

www.manaraa.com

Problem Definition 143

6.2.3 Orthogonal work in multiple domains

There have been several studies on the combination of querying the graph, along with pred-

icates (attributes) on nodes and edges. G-SPARQL [172] proposed a SPARQL-like language

for querying attributed (property) graphs. The general idea is that the topology of the graph

is in memory, while attributes are on disk in a de-normalized relational model. A query op-

timizer decomposes the query and determines the order to execute parts of the query such

that the intermediate results are minimized. Horton+ [175] is another system that can express

reachability queries with predicates on nodes and edges to match graph paths.

There has been related works that combines the efficient processing of queries in other

domains such as spatial-textual [43, 118, 59] and spatial-social [139, 11]. IR-tree [43] is an index

introduced to efficiently perform queries that involve the spatial and the textual dimensions.

IR-Tree enables a query that is composed of a keyword and a location, and retrieves documents

that are both geographically and textually close to the query object. In the IR-tree, a traditional

spatial R-tree index is augmented with an inverted index having the posting lists at each level

of the tree.

As there is no universally agreed index to query graph data (like the R-tree for spatial

data), initially, we examined graph indexes built with the objective of speeding up different

types of queries such as subgraph matching [218, 228, 226, 191], shortest path and reachability

[194, 87, 221]. Similar to the IR-tree, our goal was to review if these indexes can be extended

with text information. We did not continue with this approach for several reasons; many of

these graph indexes involved a large pre-computation overhead [191] and was focused on efficient

processing of specific queries.

6.3 Problem Definition

In this section we formally introduce the problem of top-k graph keyword search in a network.

Let G(V,E) be a social graph with a set of users represented as vertices v ∈ V and a set of

edges e ∈ E connecting them. An edge can represent any social interaction among users. Each

node v ∈ V contain a set of zero or more keywords associated with it, denoted by D(v). The

set of vertices containing a given keyword w is denoted by V (w) where V (w) ⊆ V . Notations

we use in definitions and later in algorithms are listed in Table 6.2. A user v is ranked based

on the combination of distance to query q.u and textual descriptions relevant to query term

q.w as illustrated next.

www.manaraa.com

Problem Definition 144

Social Proximity: A path p = (v1, ...vl) is a sequence of l vertices in V such that for each vi
(1 ≤ i ≤ l), (vi, vi+1) ∈ E. The length of the path is the number of edges along the path. Social

proximity between any two users vi and vj , denoted as s(vi, vj) is based on their shortest path

distance:

s(vi, vj) =
sdist(vi, vj)

sdistmax
(6.1)

where sdist(vi, vj) is the length of the shortest path connecting vi and vj . The sdistmax is

the largest shortest path length between any pair of vertices in the graph, used to normalise

s(vi, vj) between [0,1]. We adopt the shortest path approach as a measure of social proximity as

previous work [223, 201] has shown that it effectively captures the influence between two users.

A higher value of social proximity (1− s(q.u, v)) for node v indicates better social relevance to

query node q.u.

Textual Relevance: A user v is considered relevant to the query iff v contains the query term

q.w at least once, i.e. q.w ∈ D(v). The textual relevance denotes the similarity between a

query term q.w and D(v). We adopt the standard tf-idf model.

t(q.w,D(v)) =
tf(q.w,D(v))× idf(q.w)

tdistmax
(6.2)

where tf(q.w,D(v)) denotes the number of occurrences of term q.w in D(v)(i.e freq) and

calculated as freq/(|D(v)|). idf(q.w) denotes the inverse document frequency of q.w (docFreq)

Table 6.2: Some notations used in definitions and algorithms.

Symbol Description

V,E set of vertices (nodes) and edges, resp.
D(v) set of keywords associated with node v
V (w) set of vertices containing the keyword w
s(vi, vj) social proximity between users vi and vj
t(q.w,D(v)) textual relevance between query term q.w and terms used by user v
sdistmax, tdistmax maximum possible social and textual scores resp.
R final result set with k nodes
fk the k-th highest f value in the result set R
p(v) partition for node v
S(q.u) social list with decreasing social proximity to q.u
T (q.w) text list with decreasing text relevance to q.w
P set of partitions for graph G
S(Pi, q.u) social list for partition Pi for query user q.u
T (Pi, q.w) text list in partition Pi with decreasing text relevance to q.w
B(Pi) set of boundary nodes for partition Pi

C(v) subset of boundary nodes closest to v

www.manaraa.com

Baseline Algorithms 145

in the entire document collection calculated as (numDocs/(docFreq + 1)). tdistmax denotes

the maximum score for the term, used to normalize the text score to [0,1], which is denoted by:

tdistmax = max
v∈V

t(q.w,D(v)) (6.3)

A higher value of textual relevance t(q.w,D(v)) for node v indicates better textual relevance

to query keyword q.w.

Overall ranking function. Following common practice in combining rankings from different

domains, we apply a linear function [43, 118] over the normalized social and textual proximity

to rank objects. Given a query user q.u and a keyword q.w, the ranking of v ∈ V is determined

by function f as:

f(v) = α · (t(q.w,D(v))) + (1− α) · (1− s(q.u, v)) (6.4)

where 0 ≤ α ≤ 1 denotes the relative significance of the individual components in the two

domains.

Definition 7 (kSTRQ). Top-k Social Textual Ranking Query on a graph G can be expressed

as a triple q = (u,w, k) where u ∈ V is the query vertex in G, w is a keyword and k is a

positive integer denoting the number of output records. kSTRQ query returns a result set R

that contains k users v ∈ V − {q.u} with the highest f(v) values.

6.4 Baseline Algorithms

kSTRQ is a first attempt at providing a solution to the social-textual ranking queries in a graph

database system. Although variations on this query processing exist, dealing with approximate

distance calculations, operating on different graphs, and introducing specialized structures (as

discussed in Section 6.2), they are not directly applicable to solving kSTRQ. This is either

because they do not solve the exact query or they make use of customized index structures that

are not easily extensible in a graph database setting. Thus there is no straightforward way to

use any of these approaches as our baselines. Instead we resort to other approaches that we

can modify and implement in our current setting.

A naive approach is to go through all the objects v in the graph calculating the combined

f(v) score (Equation 6.4) for each node, sorting it and returning the top-k elements in the

list. This computation may be prohibitively expensive considering that compared to the total

www.manaraa.com

Baseline Algorithms 146

number of nodes, only a small subset of nodes may include the query term. As a result, our first

baseline involves traversing the posting list with the query term and calculating the combined

score f .

6.4.1 Text First Algorithm (TFA and TFA_ET)

kSTRQ can be processed using a Text First Algorithm (TFA) that iterates through the text

list that contains the query term (also known as the postings list). For a given keyword q.w,

it processes users who have used the term (V (q.w)) in decreasing text relevancy. For each

user v ∈ V (q.w), TFA calculates the social proximity between q.u and v (Equation 6.1) and

in turn computes the combined value f . If v is the last user in set V (q.w), the expression

θ = α.t(q.w,D(v)) (lower) bounds the f value of every non-encountered user.

Retrieving a sorted list of text scores is a fundamental operation in any text index. However,

the calculation of the shortest path between two random users (for social proximity) may be

a more costly operation. We rely on the ability of the graph database system to calculate

the shortest path; alternatively one can utilize an external index for efficient shortest path

calculation. The TFA approach works well when the frequency of the query keyword is low.

The complexity of this algorithm is determined by the size of the postings list O(|V (w)|).
Inspired by the Threshold algorithm [58], an early termination condition on TFA (named,

TFA_ET) enables traversing a sorted postings list partially. At each iteration of TFA, the

algorithm keeps track of the score of the current k-th object in the result set, denoted by fk.

The best possible sdist is when any user v, is 1-step (direct neighbours) from query user q.u

and thus the right of the ‘+’ operand of Equation 6.4 can be upper bounded to the maximum

social score maxSS. For a new object, if fk exceeds the text relevancy score combined with

maxSS (from Equation 6.4), the algorithm can terminate. The reason is that it is guaranteed

that the f -score of unseen objects is always lower than the current kth score.

6.4.2 Social First Algorithm (SFA and SFA_ET)

The main idea of SFA is to consider users in increasing social distance to the query user q.u.

A Breadth-first-search (BFS) and a Dijkstra algorithm around q.u would be required for un-

weighted and weighted graphs respectively. For every encountered user v, the text relevance

of query keyword q.w is computed (if v exists in V (q.w)), and then calculates the combined

score f . Finding the text score requires a random access to the postings list V (q.w). The

first top-k users are placed in the interim result R. For any subsequent user v, if f(v) > fk,

www.manaraa.com

Baseline Algorithms 147

v is added to the interim result. To efficiently perform this, a forward index which keeps the

text relevance score of each user/term is helpful. The number of iterations of this algorithm is

upper bounded by O(|V |). If the graph is well connected with a small diameter, BFS can be

computed efficiently.

SFA can also be terminated early by keeping track of the fk value. Early termination of

SFA (named SFA_ET) may exit early, without having to perform a full BFS. The best possible

text score is tdistmax (Equation 6.3). For any calculated sdist, the left of the ‘+’ operand in

Equation 6.4 can be upper bounded to the maximum textual scoremaxTS. For a new object, if

fk exceeds the social proximity score combined withmaxTS (from Equation 6.4), the algorithm

can terminate. The reason is that it is guaranteed that unseen objects are always lower than

the current kth score.

The drawback of both TFA- and SFA- based algorithms is that they are ignorant of the

social or the textual dimension respectively. SFA would be unnecessarily traversing nodes that

either have a low textual score or worse, not be in the postings list at all. Similarly, TFA

may traverse nodes that are socially distant to the query node. To overcome this limitation,

the threshold algorithm we describe next, iterates through both dimensions simultaneously for

efficient pruning of results.

6.4.3 Threshold algorithm (TA)

u1

u2

u4

u3

u5 u6

{a} {a, b}

{a}

{a, b}

{a} {a, b}

u5 0.9

u4 0.5

u1 0.4

u2 0.3

u6 0.3

u3 0.2

Ranked list for term ‘a’

u1 0.75

u3 0.75

u4 0.75

u5 0.50

u6 0.25

u2 0.00

Ranked list of distance to u2

Figure 6.1: Social network and ranked lists for term a and distance to u2

In the threshold algorithm [58] (TA), two ranked lists are maintained for each of the social

and text dimensions. The social list is in increasing social distance (decreasing proximity) to

q.u denoted by S(q.u), while the textual list is in decreasing textual relevance to q.w denoted

by T (q.w). Figure 6.1 shows the ranked lists based on the social proximity from query user

www.manaraa.com

Baseline Algorithms 148

u2 (s(u2, ui)) and text relevancy for query term a (t(q.a,D(v))). Sorted and random access to

each of the lists are required to calculate the candidates overall score f .

Algorithm 5 Threshold Algorithm
Input: Sorted social list S(q.u), sorted text list T (q.w), k
Output: Result set R containing the top-k users
1: visited ← {}, position ← 0, threshold θ ← 0
2: R ← getNewPriorityQueue()

3: while top-k elements in R > θ do
4: v ← S.getS(position) . sorted access to S
5: if id(v) /∈ visited then
6: sScore ← score(v)
7: socialThreshold ← score(v)
8: tScore ← T.getR(id(v)) . random access to T
9: if tScore 6= 0 then . will be 0 if id(v) /∈ T
10: f ← combine(sScore, tScore)
11: R.Enqueue(id(v), f)
12: visited ← visited ∪ {id(v)}
13: end if
14: end if

15: v ← T.getS(position) . sorted access to T
16: if id(v) /∈ visited then
17: tScore ← score(v)
18: textThreshold ← score(v)
19: sScore ← S.getR(id(v)) . random access to S
20: f ← combine(sScore, tScore)
21: R.Enqueue(id(v), f)
22: visited ← visited ∪ {id(v)}
23: end if
24: θ ← combine(socialThreshold, textThreshold)
25: position ← position + 1
26: end while

The TA algorithm is outlined in Algorithm 5. In order to calculate a combined score, for

every sorted access (getS) in one ranked list it requires a random access (getR) to the other. The

combine function in the algorithm uses Equation 6.4 to calculate the total score. It terminates

once enough results that satisfy a particular threshold have been processed. TA requires that

the preference function f (Equation 6.4) is increasingly monotone on all m attributes (in our

case, m = 2) probing the ranked lists in a round robin fashion. For each element pulled from a

list, it computes the f value of the corresponding tuple by fetching its m−1 attributes from the

other lists via random access. It maintains an interim result of top-k tuples seen so far, it also

keeps a threshold θ computed as the value of f over the last attribute value pulled from each

of the m repositories. Essentially θ is an upper bound on the f value of any non-encountered

www.manaraa.com

Baseline Algorithms 149

tuple further down. TA terminates when θ is no smaller than any of the f values in the interim

results, which is reported as the final result.

Example 6.2. Threshold algorithm: The social network and the corresponding terms of six

users are shown in Figure 6.1. Query user is u2, query term is a and α = 0.5. TA retrieves

the top-2 as follows. TA first accesses u1 in the social domain (u1’s text score from random

access) with f value 0.575 and places into the interim result, R = {u1}. Sorted postings list

gives u5 with f value of 0.7 (social score from random access) and sets R = {u5, u1}. Next,

u3 with f = 0.475 and u4 with f = 0.625 is added to the list R = {u5, u4, u1, u3}. At this

point the threshold values for social and textual domain are 0.75 and 0.5 yielding a threshold

θ = 0.625. The current top-2 results are no smaller than θ, the algorithm terminates returning

top-2 {u5, u4} with the highest scores.

Table 6.3: Sorted and random access to ranked lists

Ranked list sorted access random access

users sorted by
distance to q.u (S(q.u)) S.getS(i) find shortest path sdist

S.getR(id(v))

users sorted by
text scores with q.w (T (q.w)) T .getS(i) given user id, get text score

T.getR(id(v))

Table 6.3 lists how sorted and random access is performed on each of the lists. Sorted access

to S(q.u) list means that, given a position i, we are able to sequentially retrieve the user in

that position (S.getS(i)). Given a position i, the sorted access to text list T (q.w) means we can

sequentially traverse this list (T.getS(i)). In order to run the TA, efficient random access to each

of the lists is necessary. Random access in the social domain requires that, given any user v,

the shortest distance between query node q.u and v is found. We depend on the graph database

system to return the shortest path between two given nodes efficiently. Random access in the

textual domain means that, given a term w, and a user v, we need to quickly find its score (i.e.

tf-idf score). To retrieve this from T (q.w), in the worst case, a full scan on the posting list is

required. Random access to the S(q.u) and T (q.w) lists may not necessarily have the same cost.

The shortest path between two random nodes further apart may be a more expensive operation

compared to finding the text score of a user in the sorted text list. The number of iterations in

TA, is upper bounded by the size of the postings list |T (q.w)| as |T (q.w)|≤ |S(q.u)|.

www.manaraa.com

Proposed PART_TA algorithm 150

6.5 Proposed PART_TA algorithm

The main idea in the proposed algorithm is that the data is decomposed along the social

dimension by performing a graph partitioning, and the text indexes are also maintained to

map the social partitions. The rationale behind graph partitioning is to enable users who are

socially close, to be placed within the same partition. In some way our goal is to construct a

combined index like the IR-tree [43]. The graph index is represented by a set of partitions in

combination with postings lists indexed for all users within the partition. This way, for a given

query user, most of this user’s n-step neighbourhood will be found by traversing only a few

partitions. Our algorithm is inspired by the threshold algorithm running on partitions, hence

the name PART_TA. When a kSTRQ is issued, the objective is to expand as few partitions

as possible to retrieve the k nodes with highest f scores. In the next sections we discuss the

pre-processing steps involved in PART_TA, the query processing algorithm and some possible

optimisations.

PA

PC

PB

a

c

b
d

e

f

s

z
t

r

x y

k

p

h

Q

partition T (pi, q.w) for keyword w

PA a: 5, b: 5, c: 1
PB d: 8, e: 2
PC f: 2

Figure 6.2: A partitioned social network with corresponding postings lists for key-
word w. The edges crossing partitions are in blue and the boundary nodes are
highlighted in grey. Query node is Q.

Figure 6.2 shows the social network of users decomposed into three partitions. The edges

crossing the partitions (edgecuts) are marked in blue. The nodes that have edges cut by the

www.manaraa.com

Proposed PART_TA algorithm 151

partitions, known as boundary nodes are noted for each partition and are marked in grey.

Each partition PA, PB and PC maintains separate inverted indexes of terms with posting lists,

denoted by T (Pi, w), containing only terms associated with nodes in the given partition. For

example, each partition Pi maintains postings list for a term w, if v ∈ T (Pi, w) such that

{v ∈ V (w) ∩ v ∈ Pi}.

6.5.1 Precomputation

At the partitioning phase, we also note the boundary nodes for each partition. For example,

the boundary nodes for each partition PA, PB and PC in Figure 6.2 are {a, k, y, z}, {r, x} and
{h, p, s, t} respectively. For r edge cuts, there could be a maximum of 2r unique boundary

nodes for a graph. But in real graphs, since a single node may become a boundary to multiple

partitions, the total number of boundary nodes are much less than 2r. A partition that a node

v belongs to is denoted by p(v) and the boundary node set for a given partition Pi is denoted

by B(Pi). A single partition will have a maximum of max(|B(Pi)|) = 2r
|P | boundary nodes.

The objective of keeping track of the boundary nodes is to pre-calculate the minimum

distance to reach each of the partitions from any given node v ∈ V . For each node v in

the graph, the closest boundary nodes to v, denoted C(v), along with the distance to v is

precomputed where C(v) ∈ B(p(v)) and generally |C(v)|< |B(p(v))|. In Section 6.5.2 we

explain why we do not require maintaining the distance to all boundary nodes. For a specific

node v, any node c ∈ C(v) and c ∈ p(v), the minimum distance to reach any other partition

Pi is sdist(v, c) + 1 via some other boundary node in partition Pi. This feature allows us to

precompute and store a small subset of only the boundary nodes in the partition that v belongs

to B(p(v)), instead of calculating distances to all the boundary nodes in other the partitions.

In a fully-connected graph, once the closest boundary nodes for p(v) is known, we can easily

find the corresponding boundary nodes in the rest of the partitions. The node sets along with

their social scores, denoted by S(Pi, v) for each partition pi, specific to a node v, act as the

closest entry point to reach each of the partitions from v. S(p(v), v) is calculated via a BFS

from node v.

Example 6.3. Distances to boundary nodes pre-computation. For query node Q in the example

Figure 6.2, P (Q) = PC . The boundary nodes B(PC) = {p, h, s, t}. In this simplified example,

C(Q) = B(P (Q)). The closest boundary nodes with their distances are {p:1, h:2, s:4, t:4}.

From this we can derive the closest entry points to reach each of the partitions: PA = {a : 2, k :

3, z : 5} and PB = {r : 5} denoted by S(PA, Q) and S(PB, Q) respectively.

www.manaraa.com

Proposed PART_TA algorithm 152

6.5.2 Query Processing algorithm

Algorithm for PART_TA is outlined in Algorithm 6. The intuitive idea is to run a variation

of the threshold algorithm locally on each partition until the global top-k results are found. A

priority queue is used to keep track of the results. An element in the queue can either represent

a score (f) for a partition (type=‘partition’) or represent a score for a user (type=‘user’) in the

network.

Algorithm 6 PART_TA

Input: query user q.u, keyword q.w, requested number of users k,
S(Pi, q.u) ranked social list, T (Pi, q.w) ranked text list

Output: Result set R containing the top-k users
1: R ← {}
2: Queue ← getNewPriorityQueue() . type (‘partition’ or ‘user’)
3: /* For each partition queue top-1 partition score */
4: for partition pi ∈ P do
5: f ← traverse(pi, 1) . f is the max. score for pi
6: Queue.Enqueue(pi, f) . type=‘partition’
7: end for
8: /* Processing the Queue */
9: while |R| ≤ k do
10: element ← Queue.Dequeue()
11: if type(element) == ‘partition’ then
12: /* expand partition */
13: x← k−|R| . Remaining no. of elements to find
14: localQueue ← Traverse(id(element), x) . partition id
15: Queue ← Queue ∪ localQueue . add x elements
16: else
17: R ← R ∪ {id(element)}
18: end if
19: end while
20: Return R

The algorithm starts by enqueueing partition elements with f scores representing the top-1

scores for each partition. The top-1 scores are calculated for each partition by running the

threshold algorithm locally (line 4-7 in Algorithm 6). The traverse function (Algorithm 7)

runs a modified threshold algorithm locally within the partition to find the top-x elements.

traverse requires two sorted lists of the social scores and text scores. T (Pi, q.w) is a ranked

postings list recored for partition Pi filtered by the query keyword q.w. S(Pi, q.u) is a ranked

list of social proximity from user q.u to enter a partition Pi as described in Section 6.5.1. Each

www.manaraa.com

Proposed PART_TA algorithm 153

Algorithm 7 Traverse: Local Threshold algorithm
Input: partitionId i, x no. of top elements to find, sorted social list

S(Pi, q.u), sorted text list T (Pi, q.w)
Output: Local Queue LQ, topScore f
1: function traverse(i, x)
2: Run threshold algorithm until top-x is found
3: Return LQ, f
4: end function

0.79 0.67 0.65 0.31 0.30 ... Sn

P2P3 ... PnP4P5P1

queue start queue end

Figure 6.3: Initial Queue with k = 10, |R|={}

partition also records its local queue, and an iteration position. After this step, the initial

queue will consist of maximum f scores of only partition elements as shown in Figure 6.3. This

will guide the order in which the query will be processed. Once the top-1 positions have been

found, the query is processed in this order. For example, in Figure 6.3, partition P1 will be

expanded first since it has a maximum f score of 0.79. The first element is dequeued, and

P1 partition is expanded (Line 11) first to find x elements where initially, x = k. traverse

continues traversing the lists restarting from the position in which the calculation stopped to

find top-1. The algorithm continues to expand partitions in the order they appear in the queue,

until k users have been found.

The complexity of TA is upper bounded by the size of the postings list since, in the worst

case, it will only run for n iterations, where n = |T (q.w)|. Assuming a similar distribution of

keywords among all partitions, a partition on average has a postings list of size l = |T (w)|
|P | . Using

this heuristic, the size of the social list in a partition, |(S(Pi, q.u))| or the subset of boundary

nodes to be maintained (|C(q.u)|), can be upper bounded to l where w above is a non-stopword

term with the highest frequency.

There are several optimisations within the kSTRQ algorithm to terminate early. Figure 6.4

shows an intermediate position of the queue where k = 10 and the top-3 elements have already

been found. The next element in the queue to be dequeued is a node that represents the

www.manaraa.com

Proposed PART_TA algorithm 154

partition P2 with a top-1 score of 0.65. At this position, P2 will be expanded in the traverse

function until either of the two following conditions are met.

1. Found top-x in the partition where x = k − |R|. In Figure 6.4, in the worst case, P2

should be expanded to find the top-7 elements.

2. The local threshold in the partition does not go lower than the score in the x−th position

in the global queue, i.e. 0.16. The local traverse function can terminate if a score of an

element goes below 0.16 as it is guaranteed that an element below that threshold cannot

be part of the top-k elements in the global queue.

0.79 0.78 0.67 0.65 0.52 0.48 0.31 0.30 0.28 0.16

p1: u3

a) Current result set R, top-3 b) Current Partial Queue, k = 10

p1: u8 p3: u5 p3: u12p1: u20 p3: u4 p1: 13P4P5P2

... ...

queue start queue end

Figure 6.4: Intermediate Global Queue with k = 10. Partitions expanded so far are
P1 and P3.

The local threshold algorithm can terminate with the local queue if one of those conditions

is met. The result set |R| is then populated with the top-x elements in the local queue. The

PART_TA algorithm guarantees that only the partitions that appear in the top-k result set

will be expanded.

6.5.3 Graph partitioning strategy

There are several approaches to partition the graph. We perform a n-way graph partitioning

algorithm using METIS [96] to decompose the graph. Graph partitioning divides the set of

vertices V into n disjoint partitions (P1, ..., Pn) such that Pi ∩ Pj = ∅ for i 6= j, |Pi|≈ |V |n , and

inter-edges, i.e., the edge cuts, are minimized. Partitioning algorithms such as METIS create

partitions similar in size, enabling a balanced workload for each partition. The drawback of

this approach is that n may not represent the natural clusters within the graph.

Alternatively, we can adopt community detection or clustering algorithms, but they are not

guaranteed to generate equal sized partitions. Another improvement on the decomposition is

to extend existing clustering approaches that take into account the homogeneity of attribute

values along with the graph topology when deciding its clusters [219, 229]. This may yield a

www.manaraa.com

Experiments 155

better final result (expanding even fewer partitions), as the graph is essentially partitioned in

both dimensions, however comes at a much higher pre-processing cost. These are two trade-offs

to be considered in selecting algorithms to decompose the graph. In this chapter, we resort to

graph partitioning methods that are known to be efficient and effective in terms of reducing

edge cuts on large graphs. Instead of arbitrarily selecting n, we choose n to be dependent on

|V |, i.e. n = log(|V |). As seen in other work [120, 82] the idea is that, to take advantage of

a decomposition, we need to consider reductions that are an order of magnitude less than the

original graph.

6.6 Experiments

We conducted experiments to demonstrate the performance of the proposed PART_TA algo-

rithm over the baseline approaches. We first describe the experimental setup for our analysis.

All algorithms were implemented in Java. The experiments were conducted on a Intel Core

i7-4790K at 4.00GHz with 16GB RAM and 60GB SSD. The details of the datasets and graph

database system used are given next.

6.6.1 Datasets

We used three real-world datasets (maintained by the AMiner project [6]) demonstrating differ-

ent characteristics of the graph and text associated with the nodes. Table 6.4 shows a summary

of each of the datasets considered.

• Twitter graph is created from 87K users with the “following” relationship among them.

The 99,696,204 Tweets recorded for these users have been processed to attach hashtags

as the text content of each user.

• AMiner is a co-authorship network representing the collaboration relationships of aca-

demic authors. Each user has a set of keywords describing his/her research interests.

• Flickr is a photo sharing network of users where the links represent friendship relation-

ships. From this dataset, we extracted relationships of around 400k users. Flickr user

nodes are given group names, representing the groups they belong to sharing common

interests of photography such as Wildlife and Landscapes.

Since Twitter and Aminer graphs had many isolated components, we have preserved only

users that belong to the largest connected component of each of these networks. Setting a

www.manaraa.com

Experiments 156

Table 6.4: Dataset Description

Dataset Nodes Edges Avg/Max
Degree Diameter No. of unique

keywords Description

Twitter 87,349 306,249 7.8 / 230 15 1.3M who-follows-whom social network
AMiner 1,057,194 3,634,124 4.9 / 551 24 2.9M Academic Co-authorship network
Flickr 424,169 8,475,790 39.6 / 11,930 8 340K Friendship social network

default partitioning to be around log(|V|), Twitter, AMiner and Flickr have been partitioned

into 6, 8, and 6 partitions respectively.

6.6.2 Graph Database System

We chose Neo4j as the graph database system to conduct our experiments for several reasons.

Neo4j is optimized for graph traversals and is suitable for efficiently performing graph-based

operations of the kSTRQ. Neo4j also allows manipulation of text via a Lucene index, to perform

a full-text search on node properties. The combination of these features in Neo4j facilitates our

kSTRQ query, making it an ideal test bed for our experiments. Lucene enables us to construct

the inverted index with keywords as terms, node ids corresponding to the document ids, and

we made use of the tf-idf based similarity measures provided by Lucene. The databases were

created using Neo4j 3.1 Community Edition. For all experiments page cache in Neo4j was set

to 4GB.

The partitions created from METIS have been modeled in the graph as a node attribute

ranging from 1 to |P|. As PART_TA requires the inverted indexes to be partitioned; we simulate

this behaviour in Neo4j by storing different Lucene indexes corresponding to each partition.

The local similarity measures of each partition were configured to match the similarity of a

global inverted index – otherwise, PART_TA operating on partitions would yield a different

result set to the baseline algorithms.

Table 6.5: Parameter Variations and default values

Parameter Range Default

α 0.1, 0.2, 0.3, 0.4, 0.5 0.3
k 5, 10, 15, 20 10

www.manaraa.com

Experiments 157

6.6.3 Performance Evaluation

To generate a query, we randomly pick a user in the dataset and randomly pick a term out of

the keywords attached to this user to be the query keyword. The reported timing measurements

is an average timing of running 100 such queries. The proposed PART_TA algorithm is com-

pared with the baselines, TFA, TFA_ET, SFA, SFA_ET and TA. We study the performance

on different datasets under various parameter settings listed in Table 6.5. In particular, we

investigate the effect of varying the preference parameter α (Equation 6.4), and the number of

objects k returned from the query.

0.1 0.2 0.3 0.4 0.5
 0

1000

2000

3000

4000

5000

6000

7000

T
im

e
(m

s)

TFA TFA_ET SFA SFA_ET Part_TA TA

(a) Twitter
0.1 0.2 0.3 0.4 0.5

 0

 2000

 4000

 6000

 8000

10000

T
im

e
(m

s)

TFA TFA_ET SFA SFA_ET Part_TA TA

(b) AMiner
0.1 0.2 0.3 0.4 0.5

 0

 2000

 4000

 6000

T
im

e
(m

s)

TFA TFA_ET SFA SFA_ET Part_TA TA

(c) Flickr

Figure 6.5: Effect of preference parameter α.

Varying α. Figure 6.5 shows the results of varying the preference parameter value α from

0.1 to 0.5; this setting is following existing work [47, 27] where preference is given to social

proximity. Y-axis shows the average timing in milliseconds. A smaller value of α indicates that

more preference is given to the social proximity of a user v to the query user u. Objects closer

to the query user in graph distance become more eligible to be included in the final result set.

In real social network applications, it is appropriate to retrieve and suggest socially close users

rather than far away users who are ranked higher in text scores. In all the datasets, TFA and

SFA approaches do not vary much, as these baselines require traversing their full respective

textual and social lists, irrespective of the α value set. We retain their performance to observe

the relative difference in their respective early termination variations.

Let us first discuss some general observations across the datasets. A larger value in α leads

to better performance in the TFA_ET algorithm as the text relevance becomes more important:

the termination threshold would be reached faster having to go through only a few iterations in

the text list. Conversely, for SFA_ET, timing becomes worse with increasing α, as the weight

on the social proximity is reduced, and thus, has to traverse more iterations in the social lists.

www.manaraa.com

Experiments 158

As we have noted in Section 6.4, a random unit operation in TFA_ET (i.e. shortest path

calculation) is much more expensive than a random unit operation in SFA_ET (i.e. retrieving

a text score in a list) which helps to explain the large timing difference between TFA_ET and

SFA_ET in lower α values.

Although better than most baselines, for the smaller Twitter graph (Figure 6.5a), the timing

between PART_TA and TA does not show a significant difference. Averaging across varying

α values, the performance improvement of PART_TA compared to TA is 10.2%. SFA_ET

performs better than PART_TA and TA for small α values operating on the graph with only

87K nodes. A possible reason could be that, due to the small size of the graph, it does not

fully utilize the benefits of partitioning the graph. Comparing AMiner (Figure 6.5b) and Flickr

(Figure 6.5c) graphs, the relative difference between TFA and SFA is larger for Flickr. This

behaviour can be explained by characteristics of the datasets (Refer Table 6.4). Flickr is a

more dense graph with a diameter of 8 and a much larger average degree which indicate that

nodes are more clustered together, thus requiring less time to perform a full BFS (as in SFA)

compared to AMiner.

For larger graphs, PART_TA demonstrates better performance irrespective of the changing

α. For the Aminer dataset, comparing with TA, the best performance is observed at α =

0.4, with a performance improvement of 57.8% and an improvement of 52.2% on average.

For the Flickr dataset, the best performance is observed at α = 0.5, with a performance

improvement of 59.1% and on average, an improvement of 50.1%. PART_TA performs even

better compared to TFA- and SFA- based early termination variations (upto 76% improvement),

with the exception of the two edge cases in AMiner. For the edge case of 0.1 we observe that

SFA_ET performs better but gets worse as α is further increased. Similarly, at the other

end, at 0.5, TFA_ET becomes a close contender to PART_TA. Again, it gets worse when α

is decreased. This unstable behaviour of the early termination algorithms, makes them not

suitable for the general case. The TA algorithm also seems robust to changing α, similar to

PART_TA, however demonstrates worse timing as quantified above.

Varying k. Figure 6.6 shows the results of varying the number of output records k from 5 to

20. Y-axis shows the average timing in milliseconds. The TFA and SFA baselines are about the

same as they are not sensitive to the value of k. As the value of k is increased, more processing

and traversals are required to retrieve the final result set.

The Twitter graph (Figure 6.6a) does not show a significant increase in the methods as

the costly shortest path calculation step can be efficiently executed on a smaller graph. In

www.manaraa.com

Experiments 159

top5 top10 top15 top20
 0

 2000

 4000

 6000

 8000

10000

12000

T
im

e
(m

s)
TFA TFA_ET SFA SFA_ET Part_TA TA

(a) Twitter
top5 top10 top15 top20

 0

 2000

 4000

 6000

 8000

10000

12000

T
im

e
(m

s)

TFA TFA_ET SFA SFA_ET Part_TA TA

(b) AMiner
top5 top10 top15 top20

 0

 2000

 4000

 6000

T
im

e
(m

s)

TFA TFA_ET SFA SFA_ET Part_TA TA

(c) Flickr

Figure 6.6: Effect of preference parameter k.

all datasets, with increasing k, the rate of growth for TFA_ET and SFA_ET algorithms is

higher than TA and PART_TA. An interesting behaviour of the larger AMiner (Figure 6.6b)

and Flickr (Figure 6.6c) graphs, is that our proposed PART_TA approach does not vary much

when k is increased. Our conjecture is that once a partition is expanded to search for x objects,

an additional x + δ values would be found from a smaller, localised partition, whereas other

algorithms deal with the whole graph making it a much larger search space to find the additional

values.

0.1 0.2 0.3 0.4 0.5
30

35

40

45

50

55

60

65

70

P
er

ce
n

ta
g

e
o

f
P

ar
ti

ti
o

n
s

ex
p

an
d

ed

Twitter AMiner Flickr

Figure 6.7: Percentage of partitions expanded in PART_TA with varied α.

Partitions expanded. For each of the datasets, we investigate the percentage of partitions

expanded when α is increased, as shown in Figure 6.7. As the graphs are of different charac-

teristics, we want to examine the effect the density of the graphs have on the percentage of

expanded partitions. Smaller values of α indicate that more preference is given to the social

proximity of a user v to the query user u. Since partitioning aims to co-locate a query user’s

www.manaraa.com

Experiments 160

neighbourhood within the same partition, socially close users would be found by expanding

only a few partitions. As α is increased, more partitions need to be expanded to retrieve the

query result, as socially distant users may also be eligible for the final result set, if their text

is relevant. For the AMiner and Twitter graphs, the percentage of partitions expanded is in-

creasing with α as expected, however it stabilises at around 48% when α = 0.5. For the denser

Flickr graph, the percentage of partitions expanded is much higher at first, however do not

increase much with a growing α. For this experiment, we increased α until 0.9 to examine if

the percentage of partitions expanded became closer to 100% which is not desired behaviour

for PART_TA. At α = 0.9, the percentage only increased to 66.3, 54.5 and 49.8 for the Flickr,

Twitter and Aminer graphs respectively, which is acceptable, not expanding all partitions.

0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

100

P
er

ce
n

ta
g

e
o

f
It

er
at

io
n

s

TFA TFA_ET SFA SFA_ET Part_TA TA

Figure 6.8: Percentage of iterations traversed (actual iterations / maximum possi-
ble iterations) for AMiner.

Percentage of iterations traversed. In Figure 6.8, for each of the algorithms we examine the

number of iterations run as a fraction of the maximum possible iterations in the AMiner graph.

For example, the maximum possible iterations for SFA and TFA algorithms is |V | and |V (q.w)|
respectively. Since these algorithms are not optimized, they run |V | and |V (q.w)| iterations
producing a percentage of 100% in the above figure. On the other hand, the early termination

variations run only a fraction of |V | and |V (q.w)| for SFA_ET and TFA_ET respectively. Both

TA and PART_TA, are executed as a fraction of |V (q.w)| (Discussed in Section 6.4.3).

Figure 6.8 clearly demonstrates the reverse behaviour of TFA_ET and SFA_ET with in-

creased α values. When α is small, SFA_ET can terminate by examining only about 27% of

graph nodes while TFA_ET shows no improvement over the TFA algorithm. TFA_ET stands

www.manaraa.com

Summary 161

out only at higher α values, traversing only about 5% of the text lists to retrieve the top-

k results. TA demonstrates slightly better results compared to PART_TA; this difference is

acceptable considering that PART_TA only performs on local partitions.

6.6.4 Discussion

In our experiments we observe better performance and robustness of the PART_TA algorithm.

We observe benefits especially on larger graphs, which are desired in many applications. The

generated partitions are simulated on Neo4j to localise our computation. We believe that if

graph database systems had support to manage the partitions physically in storage, we would

reap more benefits of our approaches, dealing with much smaller, autonomous graphs for com-

putation. However the platform should ideally not incur much overhead (i.e. communication

costs) for processing parts of the graph spanning multiple partitions. The percentage of parti-

tions expanded above is indicative of the fraction of partitions that would have to be processed

in order to retrieve the final result set k.

On the aspect of text indexing, although the Lucene index has different strategies to par-

tition and shard the index, it is not clear how these functionalities can be deployed via Neo4j.

In future work, one can also investigate the effects of using different social and text relevance

metrics and the effects of varying number of partitions has on the final result.

6.7 Summary

In this chapter we investigated the kSTRQ query that requires combined graph traversal and

text search in a graph database system. The contributions of our work are as following.

• Methodology: We reviewed existing work related to our problem (Section 6.2) and have

adopted algorithms (Section 6.4) that can be extended to a graph database setting. We

are the first to conduct a detailed investigation into performing the kSTRQ in a graph

database system.

• New algorithms: In Section 6.5 we introduce our algorithm PART_TA that partitions

the graph and efficiently processes the kSTRQ. The algorithm operates on a smaller,

localised graphs looking for a subset of results, expanding as few partitions as possible,

until the users with the highest global ranking scores have been found.

www.manaraa.com

Summary 162

• Experiments on real graphs: We conducted experiments on large real graphs (Sec-

tion 6.6) having text associated to their nodes from different domains exhibiting diverse

characteristics. We observed that our PART_TA algorithm did in fact lead to improved

query performance over the baselines and it also demonstrated robust behaviour under

changing parameters.

www.manaraa.com

Chapter 7

Conclusions and Future Directions

This thesis focused on modeling, storage and query processing aspects of graph database man-

agement systems gaining insights on different large-scale graph application scenarios. Decades

of research have contributed to the development and improvement of relational systems. We

focus on the above important topics to gain more insights into the evolving genre of graph

database systems. In this chapter we first summarise the contributions of this thesis and con-

clude with interesting research directions stemming from our work.

7.1 Summary of Contributions

In this thesis we modeled large-scale and complex applications to study how effectively graph

database systems can support features relevant to them. For this purpose, we adopted two

application scenarios constructing graphs which exhibit very different characteristics.

GDBMS for Microblogging Analytics. In our first study we investigated the use of

GDBMS for Microblogging analytics representing a social network application setting. We

conducted the first extensive review on data models and query systems in existing approaches

for microblogging analyses. The requirement for graph-based data models were emphasized to

answer novel and interesting queries. A graph-based data model was proposed for the Twitter-

sphere which facilitate graph queries such as user recommendations, co-occurrence and influence

finding. For our empirical analysis we chose two representative systems Neo4j and Sparksee.

On a large Twitter dataset, we shared our experiences on different aspects of using these graph

163

www.manaraa.com

Summary of Contributions 164

database systems including performance of data ingestion, expressiveness of query languages

and efficiency of processing the above queries.

GDBMS for Evolving Software Code Dependencies. Dependencies in software code

repositories can also be modeled as an attributed property graph depicting different types of

dependencies among software entities. For our second large-scale graph application, an estab-

lished project from industry, Frappé, was studied. This extracts the code dependencies from

the most recent snapshot of a codebase and stores them in a graph database enabling advanced

code comprehension queries. We investigated graph-based strategies to enable advanced code

comprehension when the underlying codebase evolves over time. Unique challenges associated

with versioned graph construction with multiple code revisions were addressed by leveraging

efficient entity resolution strategies. We examined how well GDBMSs are able to model and

query evolving graphs: any tool that models code evolution would benefit from our experi-

ence on building versioned graphs addressing the challenges associated with it. Evaluations

were conducted on a very large codebase of around 13 million lines of code. On a versioned

graph built on this codebase, we demonstrated how existing code comprehension queries can

be efficiently processed and also showed the benefit of running queries across multiple versions.

Improving storage and disk I/O performance of GDBMS. Graph storage is an im-

portant factor affecting disk I/O performance and efficiency of query processing of a graph

system. As such, the problem of effective graph storage was addressed in this study, for op-

timizing disk operations. This study introduced the novel edge-labeling problem on directed

graphs, which aims to label both incoming and outgoing edges of a graph maximizing the ‘edge-

consecutiveness’ metric. The edge-labeling problem has been formulated as a maximisation

problem of the consecutiveness metric with the goal of optimally assigning edge labels to effi-

ciently answer typical graph queries. We proposed two new edge labeling schemes, FlipInOut

and GrdRandom and provided extensive experimental analyses on real-world graphs. Our

methods resulted in significantly improved disk I/O performance by achieving a better layout

and locality of edges on disk, leading to faster execution of neighbourhood-related queries.

Based on FlipInOut, we also introduced FlipCut, an effective one-pass, neighbourhood-

agnostic strategy for streaming graph partitioning.

Integrated processing of graph and keyword search on GDBMS. Although graph

systems provide support for efficient graph-based queries, there have been no comprehensive

studies on how other dimensions (such as text) stored with a graph can work well together

www.manaraa.com

Future Research Directions 165

on graph-based queries. In our final study, we addressed this problem of top-k social textual

ranking queries (kSTRQ) in a graph database system setting. An algorithm Part-Ta was

proposed, that can efficiently process graph and textual queries in combination. Graph parti-

tioning strategies have been employed in our proposed approach to optimize and speed-up query

processing along both dimensions. Our methods have been evaluated using real-world graph

datasets that have text associated on the nodes and show significant benefits in our approaches

compared to the baselines.

7.2 Future Research Directions

Armed with the observations we have of existing GDBMSs, we discuss some promising future

research directions.

Optimisation of graph query languages. A set of graph query languages such as Cypher,

Gremlin and SPARQL have been developed to query specialized graph structures. While a

standardisation of graph query languages is a long-term goal of the graph database community,

research efforts can explore optimisations of existing languages. As we have investigated a few

declarative and imperative query systems, we observe there is potential in looking into cost-

based optimizers for graph queries. Similar to SQL, it would be interesting to investigate how

an optimizer can construct an efficient plan based on alternate traversal plans.

Query support for graph evolution. Although graph evolution has been studied in litera-

ture, it has not yet been adopted in graph database systems. This research direction is motivated

by real-world graphs such as software code dependencies and social networks exhibiting inherent

behaviour of evolution. Support for graph evolution can be two-fold, essentially recognising the

temporal dimension. First, graph systems can focus on storage of evolving graphs e.g. LLAMA

[125], with emphasis on the data layout by augmenting traditional graph representations. These

approaches can also provide better support for the construction of versioned graphs. Secondly,

graph systems can provide in-built functionality for query languages to facilitate versioning. It

would be interesting to investigate how query languages can be developed or languages such

as Cypher can be extended, to natively and efficiently support time-point and time-interval

queries.

Edge labeling on dynamic graphs. Current research on node [41, 119] and edge labeling

methods [69] for improved disk-locality focuses on offline ordering/labeling algorithms. This

means that ordering of nodes or edges is performed as a pre-processing step and require a re-run

www.manaraa.com

Future Research Directions 166

of the algorithm when the graph structure is altered. Labeling methods that deal with dynamic

graphs, conducted online, is an open and interesting research direction.

Seamless combination of multiple query dimensions. In this thesis we paid attention to

the integration of keyword search and graph traversals within graph database systems. Sup-

port and integration of other dimensions (such as the spatial and temporal domain) remain

largely unexplored. Specialised systems have been developed for performing graph queries with

node/edge predicates [172, 175], systems for running spatial-social [139, 11] queries and aug-

menting existing distributed platforms with temporal capabilities [188, 111]. Consolidating

these research efforts in a graph database system setting is challenging, but would be bene-

ficial in wider adoption of graph database systems, focused on a myriad of queries on these

dimensions.

www.manaraa.com

Bibliography

[1] D. J. Abadi, S. Madden, and N. Hachem. Column-stores vs. row-stores: how differ-

ent are they really? In Proceedings of the ACM SIGMOD International Conference on

Management of Data, SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008, pages

967–980, 2008.

[2] F. Abel, C. Hauff, and G. Houben. Twitcident: fighting fire with information from social

web streams. In Proceedings of the 21st World Wide Web Conference, WWW, pages

305–308, 2012.

[3] T. Akiba, Y. Iwata, and Y. Yoshida. Dynamic and historical shortest-path distance

queries on large evolving networks by pruned landmark labeling. In 23rd International

World Wide Web Conference, WWW ’14, Seoul, Republic of Korea, April 7-11, 2014,

pages 237–248, 2014.

[4] Allegrograph: A semantic graph database. https://franz.com/agraph/allegrograph/.

[5] S. AmerYahia;, L. V. Lakshmanan;, and Cong Yu. SocialScope : Enabling information

discovery on social content sites. In CIDR 2009, Fourth Biennial Conference on Innovative

Data Systems Research, Asilomar, CA, USA, January 4-7, 2009, Online Proceedings,

2009.

[6] AMiner: Search and Mining of academic social networks. https://aminer.org/data-sna.

[7] R. Andersen and Y. Peres. Finding sparse cuts locally using evolving sets. In Proceedings

of the Forty-first Annual ACM Symposium on Theory of Computing, pages 235–244, 2009.

[8] R. Angles, A. Prat-Pérez, D. Dominguez-Sal, and J.-L. Larriba-Pey. Benchmarking

database systems for social network applications. In First International Workshop on

167

https://franz.com/agraph/allegrograph/
https://aminer.org/data-sna

www.manaraa.com

BIBLIOGRAPHY 168

Graph Data Management Experiences and Systems, GRADES 2013, co-located with SIG-

MOD/PODS, pages 1–7, 2013.

[9] Apache. Apache lucene. http://lucene.apache.org, 2017.

[10] A. Apostolico and G. Drovandi. Graph compression by BFS. Algorithms, 2(3):1031–1044,

2009.

[11] N. Armenatzoglou, S. Papadopoulos, and D. Papadias. A general framework for geo-social

query processing. Proceedings of the VLDB Endowment, 6(10):913–924, 2013.

[12] Aurelius. Titan: A distributed graph database, 2017. http://thinkaurelius.github.io/

titan.

[13] B. Bahmani and A. Goel. Partitioned multi-indexing: Bringing order to social search. In

Proceedings of the 21st International Conference on World Wide Web, WWW ’12, pages

399–408, New York, NY, USA, 2012. ACM.

[14] T. Baldwin, P. Cook, and B. Han. A support platform for event detection using social

intelligence. In Demonstrations at the 13th Conference of the European Chapter of the

Association for Computational Linguistics, pages 69–72, 2012.

[15] L. Barbosa and J. Feng. Robust sentiment detection on Twitter from biased and noisy

data. In 23rd International Conference on Computational Linguistics: Posters. Associa-

tion for Computational Linguistics, pages 36–44, aug 2010.

[16] M. S. Bernstein, B. Suh, L. Hong, J. Chen, S. Kairam, and E. H. Chi. Eddi: interactive

topic-based browsing of social status streams. In 23nd annual ACM symposium on User

interface software and technology - UIST, pages 303–312, Oct. 2010.

[17] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan. Keyword search-

ing and browsing in databases using BANKS. In Proceedings of the 18th International

Conference on Data Engineering, ICDE, pages 431–440, 2002.

[18] A. Bifet and E. Frank. Sentiment knowledge discovery in twitter streaming data. Dis-

covery Science. Springer Berlin Heidelberg, pages 1–15, Oct. 2010.

[19] N. Biggs, E. K. Lloyd, and R. J. Wilson. Graph Theory, 1736-1936. Clarendon Press,

New York, NY, USA, 1976.

http://lucene.apache.org
http://thinkaurelius.github.io/titan
http://thinkaurelius.github.io/titan

www.manaraa.com

BIBLIOGRAPHY 169

[20] A. Black, C. Mascaro, M. Gallagher, and S. P. Goggins. Twitter Zombie: Architecture

for capturing, socially transforming and analyzing the Twittersphere. In International

conference on Supporting group work, pages 229–238, 2012.

[21] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast Unfolding of Com-

munities in Large Networks. J. Stat. Mech. Theor. Exp., 2008(10):P10008, 2008.

[22] M. Boanjak and E. Oliveira. TwitterEcho - A distributed focused crawler to support open

research with twitter data. In International conference companion on World Wide Web,

pages 1233–1239, 2012.

[23] P. Boldi and S. Vigna. The webgraph framework I: compression techniques. In Proceedings

of the 13th international conference on World Wide Web, pages 595–602, 2004.

[24] K. Bontcheva and L. Derczynski. TwitIE: an open-source information extraction pipeline

for microblog text. In International Conference on Recent Advances in Natural Language

Processing, 2013.

[25] M. Broecheler. Titan: Big Graph data with Cassandra. https://www.datastax.com/dev/

blog/boutique-graph-data-with-titan, 2012.

[26] C. Budak, T. Georgiou, and D. E. Abbadi. GeoScope: Online detection of geo-correlated

information trends in social networks. Proceedings of the VLDB Endowment, 7(4):229–

240, 2013.

[27] M. Busch, K. Gade, B. Larson, P. Lok, S. Luckenbill, and J. Lin. Earlybird: Real-time

search at twitter. In Proceedings of the 2012 IEEE 28th International Conference on Data

Engineering, ICDE ’12, pages 1360–1369, Washington, DC, USA, 2012. IEEE Computer

Society.

[28] C. Byun, H. Lee, Y. Kim, and K. K. Kim. Twitter data collecting tool with rule-based fil-

tering and analysis module. International Journal of Web Information Systems, 9(3):184–

203, 2013.

[29] OrientDB: Distributed Graph, Document, Multi-model Database. http://orientdb.com.

[30] J. J. Carrasco, D. C. Fain, K. J. Lang, and L. Zhukov. Clustering of bipartite advertiser-

keyword graph. In ICDM 03, 2003.

https://www.datastax.com/dev/blog/boutique-graph-data-with-titan
https://www.datastax.com/dev/blog/boutique-graph-data-with-titan
http://orientdb.com

www.manaraa.com

BIBLIOGRAPHY 170

[31] S. Carter, W. Weerkamp, and M. Tsagkias. Microblog language identification: Over-

coming the limitations of short, unedited and idiomatic text. Language Resources and

Evaluation, 47(1):195–215, June 2012.

[32] C. Cattuto, M. Quaggiotto, A. Panisson, and A. Averbuch. Time-varying social networks

in a graph database: a Neo4j use case. In First International Workshop on Graph Data

Management Experiences and Systems, GRADES, page 11, 2013.

[33] M. Cha, H. Haddadi, F. Benevenuto, and K. P. Gummadi. Measuring user influence in

twitter: The million follower fallacy. In Proceedings of the Fourth International Confer-

ence on Weblogs and Social Media, ICWSM, pages 10–17, 2010.

[34] D. Chakrabarti, S. Papadimitriou, D. S. Modha, and C. Faloutsos. Fully Automatic

Cross-associations. In Proceedings of the Tenth ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, pages 79–88, 2004.

[35] S. Chandra, L. Khan, and F. B. Muhaya. Estimating twitter user location using social

interactions–a content based approach. In IEEE Conference on Privacy, Security, Risk

and Trust, pages 838–843, Oct. 2011.

[36] C. Chen, F. Li, C. Ooi, and S. Wu. TI : An efficient indexing mechanism for real-time

search. In Proceedings of the ACM SIGMOD International Conference on Management

of Data, SIGMOD 2011, pages 649–660, 2011.

[37] X. Chen, C. Zhang, B. Ge, and W. Xiao. Temporal social network: Storage, indexing

and query processing. In Proceedings of the Workshops of the EDBT/ICDT 2016 Joint

Conference, EDBT/ICDT Workshops, 2016.

[38] Z. Cheng, J. Caverlee, K. Lee, and C. Science. A content-driven framework for geo-

locating microblog users. ACM Transactions on Intelligent Systems and Technology,

2012.

[39] M. Cheong and S. Ray. A literature review of recent microblogging developments. Tech-

nical report, Clayton School of Information Technology, Monash University, 2011.

[40] C. Chew and G. Eysenbach. Pandemics in the age of twitter: content analysis of tweets

during the 2009 H1N1 outbreak. PloS one, 5(11), 2010.

www.manaraa.com

BIBLIOGRAPHY 171

[41] F. Chierichetti, R. Kumar, S. Lattanzi, M. Mitzenmacher, A. Panconesi, and P. Raghavan.

On compressing social networks. In Proceedings of the 15th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 219–228, 2009.

[42] P. Z. Chinn, J. Chvatalova, A. K. Dewdney, and N. E. Gibbs. The bandwidth problem

for graphs and matrices - a survey. Journal of Graph Theory, 6(3):223–254, 1982.

[43] G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval of the top-k most relevant spatial

web objects. Proceedings of the VLDB Endowment, 2(1):337–348, 2009.

[44] B. O. Connor, N. A. Smith, and E. P. Xing. A latent variable model for geographic lexical

variation. In Conference on Empirical Methods in Natural Language Processing, pages

1277–1287, 2010.

[45] M. Conover, J. Ratkiewicz, M. R. Francisco, B. Gonçalves, F. Menczer, and A. Flammini.

Political polarization on twitter. In Proceedings of the Fifth International Conference on

Weblogs and Social Media, Barcelona, Catalonia, Spain, July 17-21, 2011, 2011.

[46] Cscope home page. http://cscope.sourceforge.net/.

[47] M. Curtiss, I. Becker, T. Bosman, S. Doroshenko, L. Grijincu, T. Jackson, S. Kunnatur,

S. B. Lassen, P. Pronin, S. Sankar, G. Shen, G. Woss, C. Yang, and N. Zhang. Unicorn: A

system for searching the social graph. Proceedings of the VLDB Endowment, 6(11):1150–

1161, 2013.

[48] M. D’Ambros, H. Gall, M. Lanza, and M. Pinzger. Analysing Software Repositories to

Understand Software Evolution, pages 37–67. 2008.

[49] A. Das Sarma, S. Gollapudi, M. Najork, and R. Panigrahy. A sketch-based distance oracle

for web-scale graphs. In Proceedings of the Third ACM International Conference on Web

Search and Data Mining, WSDM ’10, pages 401–410, New York, NY, USA, 2010. ACM.

[50] J. David. That’s what friends are for: inferring location in online social media platforms

based on social relationships. In Proceedings of the Seventh International Conference on

Weblogs and Social Media, ICWSM, 2013.

[51] S. Demeyer, S. Tichelaar, and S. Ducasse. Famix 2.1—the famoos information exchange

model, 2001.

http://cscope.sourceforge.net/

www.manaraa.com

BIBLIOGRAPHY 172

[52] L. Dhulipala, I. Kabiljo, B. Karrer, G. Ottaviano, S. Pupyrev, and A. Shalita. Compress-

ing graphs and indexes with recursive graph bisection. In Proceedings of the 22nd ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, pages

1535–1544, 2016.

[53] Y. Doytsher and B. Galon. Querying geo-social data by bridging spatial networks and

social networks. In 2nd ACM SIGSPATIAL International Workshop on Location Based

Social Networks, pages 39–46, 2010.

[54] A. Dries, S. Nijssen, and L. De Raedt. A query language for analyzing networks. In

Proceedings of the 18th ACM Conference on Information and Knowledge Management,

CIKM 2009, pages 485–494, 2009.

[55] M. Efron. Hashtag retrieval in a microblogging environment. In Proceeding of the 33rd

International ACM SIGIR Conference on Research and Development in Information Re-

trieval, SIGIR, pages 787–788, 2010.

[56] S. Elbassuoni and R. Blanco. Keyword search over rdf graphs. In Proceedings of the

20th ACM International Conference on Information and Knowledge Management, pages

237–242, New York, NY, USA, 2011. ACM.

[57] FaceBook Query Language(FQL) overview. https://developers.facebook.com/docs/

technical-guides/fql.

[58] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware. J.

Comput. Syst. Sci., 66(4):614–656, 2003.

[59] I. D. Felipe, V. Hristidis, and N. Rishe. Keyword search on spatial databases. In Proceed-

ings of the 24th International Conference on Data Engineering, ICDE, pages 656–665,

2008.

[60] P. Ferragina, F. Piccinno, and R. Venturini. Compressed indexes for string searching in

labeled graphs. In Proceedings of the 24th International Conference on World Wide Web,

WWW ’15, pages 322–332, 2015.

[61] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving network

partitions. In Proceedings of the 19th Design Automation Conference, DAC ’82, Las

Vegas, Nevada, USA, June 14-16, 1982, pages 175–181, 1982.

https://developers.facebook.com/docs/technical-guides/fql
https://developers.facebook.com/docs/technical-guides/fql

www.manaraa.com

BIBLIOGRAPHY 173

[62] Filament: Graph management toolkit. http://filament.sourceforge.net/index.html.

[63] S. Frénot and S. Grumbach. An in-browser microblog ranking engine. In International

conference on Advances in Conceptual Modeling, volume 7518, pages 78–88, 2012.

[64] J. Gehweiler and H. Meyerhenke. A distributed diffusive heuristic for clustering a virtual

P2P supercomputer. In 24th IEEE International Symposium on Parallel and Distributed

Processing,IPDPS, pages 1–8. IEEE, 2010.

[65] Apache giraph: Iterative graph processing system. http://giraph.apache.org.

[66] G. Golovchinsky and M. Efron. Making sense of Twitter search. In Proc. CHI2010

Workshop on Microblogging: What and How Can We Learn From It?, 2010.

[67] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. Powergraph: Distributed

graph-parallel computation on natural graphs. In 10th USENIX Symposium on Operating

Systems Design and Implementation, OSDI 2012, Hollywood, CA, USA, October 8-10,

2012, pages 17–30, 2012.

[68] Kythe. http://www.kythe.io/docs/kythe-overview.html.

[69] O. Goonetilleke, D. Koutra, T. Sellis, and K. Liao. Edge labeling schemes for graph data.

In Proceedings of the 29th International Conference on Scientific and Statistical Database

Management, Chicago, IL, USA, June 27-29, 2017, pages 12:1–12:12, 2017.

[70] O. Goonetilleke, T. Sellis, X. Zhang, and S. Sathe. Twitter analytics: A big data man-

agement perspective. SIGKDD Explorations, 16(1):11–20, 2014.

[71] M. Graham, S. A. Hale, and D. Gaffney. Where in the world are you? geolocation and

language identification in twitter. CoRR, abs/1308.0683, 2013.

[72] GraphDB. http://graphdb.ontotext.com.

[73] Gremlin Query Language. http://s3.thinkaurelius.com/docs/titan/0.5.4/gremlin.html.

[74] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. XRANK: Ranked keyword search

over xml documents. In Proceedings of the 2003 ACM SIGMOD International Conference

on Management of Data, pages 16–27, New York, NY, USA, 2003. ACM.

http://filament.sourceforge.net/index.html
http://giraph.apache.org
http://www.kythe.io/docs/kythe-overview.html
http://graphdb.ontotext.com
http://s3.thinkaurelius.com/docs/titan/0.5.4/gremlin.html

www.manaraa.com

BIBLIOGRAPHY 174

[75] E. Hajiyev, M. Verbaere, and O. de Moor. codeQuest: scalable source code queries with

datalog. In ECOOP 2006 - Object-Oriented Programming, 20th European Conference,

Nantes, France, July 3-7, pages 2–27, 2006.

[76] W.-S. Han, S. Lee, K. Park, J.-H. Lee, M.-S. Kim, J. Kim, and H. Yu. Turbograph:

A fast parallel graph engine handling billion-scale graphs in a single pc. In Proceedings

of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, KDD ’13, pages 77–85, New York, NY, USA, 2013. ACM.

[77] N. Hawes, B. Barham, and C. Cifuentes. Frappé: Querying the linux kernel dependency

graph. In Proceedings of the Third International Workshop on Graph Data Management

Experiences and Systems, GRADES, pages 4:1–4:6, 2015.

[78] H. He, H. Wang, J. Yang, and P. S. Yu. BLINKS: ranked keyword searches on graphs.

In Proceedings of the ACM SIGMOD International Conference on Management of Data,

Beijing, China, June 12-14, 2007, pages 305–316, 2007.

[79] B. Hecht, L. Hong, B. Suh, and E. Chi. Tweets from Justin Bieber’s heart: the dynamics

of the location field in user profiles. In Conference on Human Factors in Computing

Systems, pages 237–246, 2011.

[80] S. Horwitz. Identifying the semantic and textual differences between two versions of a pro-

gram. In ACM SIGPLAN Conf. on Programming Language Design and Implementation,

pages 234–245, 1990.

[81] W. Huo and V. J. Tsotras. Efficient temporal shortest path queries on evolving social

graphs. In Conference on Scientific and Statistical Database Management, SSDBM ’14,

Aalborg, Denmark, June 30 - July 02, 2014, pages 38:1–38:4, 2014.

[82] T. İnkaya. A parameter-free similarity graph for spectral clustering. Expert Syst. Appl.,

42(24):9489–9498, Dec. 2015.

[83] B. Iordanov. Hypergraphdb: A generalized graph database. In Web-Age Informa-

tion Management - WAIM 2010 International Workshops: IWGD 2010, XMLDM 2010,

WCMT 2010, Jiuzhaigou Valley, China, July 15-17, 2010, Revised Selected Papers, pages

25–36, 2010.

www.manaraa.com

BIBLIOGRAPHY 175

[84] B. J. Jansen, M. Zhang, K. Sobel, and A. Chowdury. Twitter power: Tweets as electronic

word of mouth. Journal of the American Society for Information Science and Technology,

60(11):2169–2188, Nov. 2009.

[85] J. Jiang, L. Hidayah, T. Elsayed, and H. Ramadan. BEST of KAUST at TREC-2011 :

Building effective search in Twitter. TREC, 2011.

[86] M. Jiang, A. W. Fu, and R. C. Wong. Exact top-k nearest keyword search in large

networks. In Proceedings of the 2015 ACM SIGMOD International Conference on Man-

agement of Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015, pages 393–404,

2015.

[87] R. Jin, Y. Xiang, N. Ruan, and H. Wang. Efficiently answering reachability queries on very

large directed graphs. In Proceedings of the ACM SIGMOD International Conference on

Management of Data, SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008, pages

595–608, 2008.

[88] S. Jouili and V. Vansteenberghe. An empirical comparison of graph databases. In Social-

Com, pages 708–715. IEEE, 2013.

[89] P. Jürgens, A. Jungherr, and H. Schoen. Small worlds with a difference: new gatekeep-

ers and the filtering of political information on Twitter. In International Web Science

Conference-WebSci, pages 1–5, June 2011.

[90] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R. Desai, and H. Karambelkar.

Bidirectional expansion for keyword search on graph databases. In Proceedings of the

31st International Conference on Very Large Data Bases, Trondheim, Norway, August

30 - September 2, 2005, pages 505–516, 2005.

[91] U. Kang, D. H. Chau, and C. Faloutsos. Managing and mining large graphs : Systems

and implementations. In Proceedings of the ACM SIGMOD International Conference on

Management of Data, SIGMOD, volume 1, pages 589–592, 2012.

[92] U. Kang and C. Faloutsos. Big graph mining : Algorithms and discoveries. SIGKDD

Explorations, 14(2):29–36, 2013.

[93] U. Kang, H. Tong, J. Sun, C. Lin, and C. Faloutsos. GBASE: a scalable and general graph

management system. In Proceedings of the 17th ACM SIGKDD International Conference

www.manaraa.com

BIBLIOGRAPHY 176

on Knowledge Discovery and Data Mining, San Diego, CA, USA, August 21-24, 2011,

pages 1091–1099, 2011.

[94] U. Kang, H. Tong, J. Sun, C.-Y. Lin, and C. Faloutsos. Gbase: An efficient analysis

platform for large graphs. Proceedings of the VLDB Endowment, 21(5):637–650, June

2012.

[95] U. Kang, C. E. Tsourakakis, and C. Faloutsos. Pegasus: A peta-scale graph mining

system implementation and observations. In Proceedings of the Ninth IEEE International

Conference on Data Mining, ICDM, pages 229–238, 2009.

[96] G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irregular graphs.

Journal of Parallel and Distributed computing, 48(1):96–129, 1998.

[97] R. Kaushik, R. Krishnamurthy, J. F. Naughton, and R. Ramakrishnan. On the integration

of structure indexes and inverted lists. In Proceedings of the ACM SIGMOD International

Conference on Management of Data, Paris, France, June 13-18, 2004, pages 779–790,

2004.

[98] A. Kellens, C. D. Roover, C. Noguera, R. Stevens, and V. Jonckers. Reasoning over

the evolution of source code using quantified regular path expressions. In 18th Working

Conference on Reverse Engineering, WCRE, pages 389–393, 2011.

[99] B. Kernighan and S. Lin. An Efficient Heuristic Procedure for Partitioning Graphs. The

Bell Systems Technical Journal, 49, 1970.

[100] A. Khan, Y. Wu, C. C. Aggarwal, and X. Yan. Nema: Fast graph search with label

similarity. Proceedings of the VLDB Endowment, 6(3):181–192, 2013.

[101] U. Khurana and A. Deshpande. Efficient snapshot retrieval over historical graph data. In

29th IEEE International Conference on Data Engineering, ICDE, pages 997–1008, 2013.

[102] U. Khurana and A. Deshpande. Storing and analyzing historical graph data at scale.

In Proceedings of the 19th International Conference on Extending Database Technology,

EDBT, pages 65–76, 2016.

[103] M. Kimmig, M. Monperrus, and M. Mezini. Querying source code with natural language.

In 26th IEEE/ACM International Conference on Automated Software Engineering ASE,

pages 376–379, 2011.

www.manaraa.com

BIBLIOGRAPHY 177

[104] P. Klint, T. van der Storm, and J. J. Vinju. RASCAL: A domain specific language for

source code analysis and manipulation. In Intl. Working Conf. on Source Code Analysis

and Manipulation, pages 168–177, 2009.

[105] G. Koloniari, D. Souravlias, and E. Pitoura. On graph deltas for historical queries. CoRR,

abs/1302.5549, 2013.

[106] A. Kosmatopoulos, K. Giannakopoulou, A. N. Papadopoulos, and K. Tsichlas. An

overview of methods for handling evolving graph sequences. In ALGOCLOUD Work-

shop, pages 181–192, 2015.

[107] J. Krinke. Identifying similar code with program dependence graphs. In 8th Working

Conf. on Reverse Engineering, pages 301–309, 2001.

[108] S. Kumar, G. Barbier, M. Abbasi, and H. Liu. TweetTracker: An analysis tool for

humanitarian and disaster relief. In Proceedings of the Fifth International Conference on

Weblogs and Social Media ICWSM, pages 661–662, 2011.

[109] H. Kwak, C. Lee, H. Park, and S. Moon. What is twitter, a social network or a news

media? In Proceedings of the 19th International Conference on World Wide Web, WWW

2010, pages 591–600, 2010.

[110] A. Kyrola, G. E. Blelloch, and C. Guestrin. Graphchi: Large-scale graph computation

on just a PC. In 10th USENIX Symposium on Operating Systems Design and Implemen-

tation, OSDI 2012, Hollywood, CA, USA, October 8-10, 2012, pages 31–46, 2012.

[111] A. G. Labouseur, J. Birnbaum, P. W. Olsen, S. R. Spillane, J. Vijayan, J. Hwang, and

W. Han. The G* graph database: efficiently managing large distributed dynamic graphs.

Distributed and Parallel Databases, 33(4):479–514, 2015.

[112] J. Laval, S. Denier, S. Ducasse, and J.-R. Falleri. Supporting simultaneous versions for

software evolution assessment. Science of Computer Programming, 76(12):1177 – 1193,

2011. Special Issue on Software Evolution, Adaptability and Variability.

[113] C.-H. Lee, H.-C. Yang, T.-F. Chien, and W.-S. Wen. A novel approach for event detection

by mining spatio-temporal information on microblogs. In International Conference on

Advances in Social Networks Analysis and Mining, pages 254–259, July 2011.

www.manaraa.com

BIBLIOGRAPHY 178

[114] J. Leskovec and R. Sosic. SNAP: A general-purpose network analysis and graph-mining

library. ACM TIST, 8(1):1:1–1:20, 2016.

[115] C. Li, J. Weng, Q. He, Y. Yao, and A. Datta. TwiNER: named entity recognition in

targeted twitter stream. In The 35th International ACM SIGIR conference on research

and development in Information Retrieval, SIGIR, pages 721–730, 2012.

[116] R. Li, S. Wang, H. Deng, R. Wang, and K. C.-C. Chang. Towards social user profiling:

Unified and discriminative influence model for inferring home locations. In The 18th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD,

pages 1023–1031, 2012.

[117] Y. Li, Z. Bao, G. Li, and K. Tan. Real time personalized search on social networks.

In 31st IEEE International Conference on Data Engineering, ICDE 2015, Seoul, South

Korea, April 13-17, 2015, pages 639–650, 2015.

[118] Z. Li, K. C. K. Lee, B. Zheng, W. Lee, D. L. Lee, and X. Wang. Ir-tree: An efficient

index for geographic document search. IEEE Trans. Knowl. Data Eng., 23(4):585–599,

2011.

[119] Y. Lim, U. Kang, and C. Faloutsos. Slashburn: Graph compression and mining beyond

caveman communities. IEEE Trans. Knowl. Data Eng., pages 3077–3089, 2014.

[120] J. Liu, C. Wang, M. Danilevsky, and J. Han. Large-scale spectral clustering on graphs. In

Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence,

IJCAI ’13, pages 1486–1492. AAAI Press, 2013.

[121] Y. Liu, A. Dighe, T. Safavi, and D. Koutra. A graph summarization: A survey. CoRR,

abs/1612.04883, 2016.

[122] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein. Graphlab:

A new framework for parallel machine learning. CoRR, abs/1006.4990, 2010.

[123] H. Ma, J. Wei, W. Qian, C. Yu, F. Xia, and A. Zhou. On benchmarking online social

media analytical queries. In First International Workshop on Graph Data Management

Experiences and Systems, GRADES 2013, co-loated with SIGMOD/PODS, pages 1–7,

2013.

www.manaraa.com

BIBLIOGRAPHY 179

[124] P. Macko, V. J. Marathe, D. W. Margo, and M. I. Seltzer. LLAMA: efficient graph

analytics using large multiversioned arrays. In 31st IEEE International Conference on

Data Engineering, ICDE, pages 363–374, 2015.

[125] P. Macko, D. Margo, and M. Seltzer. Performance introspection of graph databases. In

6th Annual International Systems and Storage Conference, SYSTOR, pages 1–10, 2013.

[126] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Cza-

jkowski. Pregel: a system for large-scale graph processing. In Proceedings of the ACM

SIGMOD International Conference on Management of Data, SIGMOD 2010, Indianapo-

lis, Indiana, USA, June 6-10, 2010, pages 135–146, 2010.

[127] A. Marcus, M. Bernstein, and O. Badar. Tweets as data: demonstration of TweeQL and

Twitinfo. In Proceedings of the ACM SIGMOD International Conference on Management

of Data, SIGMOD, pages 1259–1261, 2011.

[128] A. Marcus, M. Bernstein, and O. Badar. Processing and visualizing the data in tweets.

SIGMOD Record, 40(4), 2012.

[129] M. S. Martín and C. Gutierrez. Representing, querying and transforming social networks

with RDF/SPARQL. In European Semantic Web Conference, pages 293–307, 2009.

[130] M. S. Martín, C. Gutiérrez, and P. T. Wood. SNQL: A social networks query and trans-

formation language. In Proceedings of the 5th Alberto Mendelzon International Workshop

on Foundations of Data Management, Santiago, Chile, May 9-12, 2011, 2011.

[131] N. Martínez-Bazan, M. A. Águila Lorente, V. Muntés-Mulero, D. Dominguez-Sal,

S. Gómez-Villamor, and J.-L. Larriba-Pey. Efficient graph management based on bitmap

indices. In Proceedings of the 16th International Database Engineering and Applications

Sysmposium, pages 110–119, 2012.

[132] R. C. McColl, D. Ediger, J. Poovey, D. Campbell, and D. A. Bader. A performance evalu-

ation of open source graph databases. In Parallel Programming for Analytics Applications,

PPAA ’14, pages 11–18, 2014.

[133] M. McGlohon, L. Akoglu, and C. Faloutsos. Statistical properties of social networks. In

Social Network Data Analytics, pages 17–42. 2011.

www.manaraa.com

BIBLIOGRAPHY 180

[134] F. McSherry, M. Isard, and D. G. Murray. Scalability! but at what cost? In 15th Work-

shop on Hot Topics in Operating Systems, HotOS XV, Kartause Ittingen, Switzerland,

May 18-20, 2015, 2015.

[135] P. Mendes, A. Passant, and P. Kapanipathi. Twarql: tapping into the wisdom of the

crowd. In Proceedings of the 6th International Conference on Semantic Systems, pages

3–5, 2010.

[136] M. F. Mokbel and W. G. Aref. Space-filling curves. In Encyclopedia of Database Systems,

pages 2674–2675. 2009.

[137] T. Molderez, R. Stevens, and C. De Roover. Mining change histories for unknown sys-

tematic edits. In proc. of the Intl. Conference on Mining Software Repositories, pages

248–256, 2017.

[138] F. Morstatter, S. Kumar, H. Liu, and R. Maciejewski. Understanding Twitter data

with TweetXplorer. In The 19th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, KDD, pages 1482–1485, 2013.

[139] K. Mouratidis, J. Li, Y. Tang, and N. Mamoulis. Joint search by social and spatial

proximity. In 32nd IEEE International Conference on Data Engineering, ICDE 2016,

Helsinki, Finland, May 16-20, 2016, pages 1578–1579, 2016.

[140] Neo4j graph database. https://neo4j.com/product/.

[141] T. Neumann and G. Weikum. RDF-3X: a risc-style engine for RDF. Proceedings of the

VLDB Endowment, 1(1):647–659, 2008.

[142] T. Neumann and G. Weikum. The RDF-3X engine for scalable management of RDF

data. Proceedings of the VLDB Endowment, 19(1):91–113, Feb. 2010.

[143] M. E. J. Newman. Modularity and community structure in networks. Proceedings of the

National Academy of Sciences, 103(23):8577–8582, 2006.

[144] J. Nishimura and J. Ugander. Restreaming graph partitioning: Simple versatile algo-

rithms for advanced balancing. In Proceedings of the 19th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, KDD ’13, pages 1106–1114, 2013.

[145] P. Noordhuis, M. Heijkoop, and A. Lazovik. Mining Twitter in the cloud: A case study.

In IEEE 3rd International Conference on Cloud Computing, pages 107–114, July 2010.

https://neo4j.com/product/

www.manaraa.com

BIBLIOGRAPHY 181

[146] Infinitegraph: Distributed graph database. http://www.objectivity.com/products/

infinitegraph/.

[147] A. Olteanu, C. Castillo, F. Diaz, and E. Kiciman. Social data: Biases, methodological

pitfalls, and ethical boundaries. SSRN Electronic Journal, 2016.

[148] A wicked fast source browser. https://opengrok.github.io/OpenGrok/.

[149] I. Ounis, C. Macdonald, J. Lin, and I. Soboroff. Overview of the TREC-2011 Microblog

Track. In 20th Text REtrieval Conference (TREC), 2011.

[150] A. Pak and P. Paroubek. Twitter as a corpus for sentiment analysis and opinion mining.

In International Conference on Language Resources and Evaluation, pages 1320–1326,

2010.

[151] S. Papadimitriou, J. Sun, C. Faloutsos, and P. S. Yu. Hierarchical, Parameter-Free Com-

munity Discovery. In European Conference on Machine Learning and Principles and

Practice of Knowledge Discovery in Databases, 2008.

[152] M. J. Paul and M. Dredze. You are what you tweet: Analyzing twitter for public

health. In Proceedings of the Fifth International Conference on Weblogs and Social Media,

Barcelona, Catalonia, Spain, July 17-21, 2011, 2011.

[153] S. Paul and A. Prakash. Querying source code using an algebraic query language. In

Proceedings of the International Conference on Software Maintenance, ICSM, pages 127–

136, 1994.

[154] V. Plachouras and Y. Stavrakas. Querying term associations and their temporal evolution

in social data. In International VLDB Workshop on Online Social Systems, 2012.

[155] V. Plachouras, Y. Stavrakas, and A. Andreou. Assessing the coverage of data collection

campaigns on Twitter: A case study. In On the Move to Meaningful Internet Systems:

OTM 2013 Workshops, pages 598–607. 2013.

[156] D. Preotiuc-Pietro, S. Samangooei, and T. Cohn. Trendminer : An architecture for real

time analysis of social media text. In Workshop on Real-Time Analysis and Mining of

Social Streams, pages 4–7, 2012.

[157] E. Prud’hommeaux and A. Seaborne. SPARQL query language for RDF W3C recom-

mendation. W3C, URL= https://www.w3.org/TR/rdf-sparql-query/„ 2008.

http://www.objectivity.com/products/infinitegraph/
http://www.objectivity.com/products/infinitegraph/
https://opengrok.github.io/OpenGrok/

www.manaraa.com

BIBLIOGRAPHY 182

[158] M. Qiao, L. Qin, H. Cheng, J. X. Yu, and W. Tian. Top-k nearest keyword search on

large graphs. Proceedings of the VLDB Endowment, 6(10):901–912, Aug. 2013.

[159] ioQuake3 codebase. https://github.com/ioquake/ioq3.

[160] S. Raghavan, R. Rohana, D. Leon, A. Podgurski, and V. Augustine. Dex: A semantic-

graph differencing tool for studying changes in large code bases. In 20th International

Conference on Software Maintenance ICSM, pages 188–197, 2004.

[161] F. Rahimian, A. H. Payberah, S. Girdzijauskas, M. Jelasity, and S. Haridi. Ja-be-ja: A

distributed algorithm for balanced graph partitioning. In , 2013 IEEE 7th International

Conference on Self-Adaptive and Self-Organizing Systems, pages 51–60. IEEE, 2013.

[162] K. H. Randall, R. Stata, J. L. Wiener, and R. G. Wickremesinghe. The link database:

Fast access to graphs of the web. In Proceedings of the Data Compression Conference,

DCC ’02, 2002.

[163] L. Ratinov and D. Roth. Design challenges and misconceptions in named entity recog-

nition. In Conference on Computational Natural Language Learning (CoNLL), number

June, pages 147–155, 2009.

[164] C. Ren, E. Lo, B. Kao, X. Zhu, and R. Cheng. On querying historical evolving graph

sequences. Proceedings of the VLDB Endowment, 4(11):726–737, 2011.

[165] A. Ritter, S. Clark, and O. Etzioni. Named entity recognition in tweets : an experimental

study. In Conference on Empirical Methods in Natural Language Processing, pages 1524–

1534, 2011.

[166] I. Robinson, J. Webber, and E. Eifrem. Graph Databases: New Opportunities for Con-

nected Data. O’Reilly Media, Inc., 2 edition, 2015.

[167] M. A. Rodriguez. Problem-solving using graph traversals. AT&T Technical Talk - Glen-

dale, California, 2010.

[168] R. Ronen and O. Shmueli. SoQL: A language for querying and creating data in social

networks. In Proceedings of the 25th International Conference on Data Engineering,

ICDE, pages 1595–1602, Mar. 2009.

https://github.com/ioquake/ioq3

www.manaraa.com

BIBLIOGRAPHY 183

[169] C. D. Roover, C. Scholliers, V. Jonckers, J. Pérez, A. Murgia, and S. Demeyer. Imple-

mentation of the CHA-Q meta-model: A comprehensive change-centric software repre-

sentation. ECEASST, 65, 2014.

[170] A. Roy, I. Mihailovic, and W. Zwaenepoel. X-stream: Edge-centric graph processing using

streaming partitions. In Proceedings of the Twenty-Fourth ACM Symposium on Operating

Systems Principles, SOSP ’13, pages 472–488, New York, NY, USA, 2013. ACM.

[171] T. Sakaki. Earthquake shakes twitter users : Real-time event detection by social sensors.

In Proceedings of the 19th International Conference on World Wide Web, WWW, pages

851–860, 2010.

[172] S. Sakr, S. Elnikety, and Y. He. G-sparql: A hybrid engine for querying large attributed

graphs. In Proceedings of the 21st ACM International Conference on Information and

Knowledge Management, CIKM ’12, pages 335–344, New York, NY, USA, 2012. ACM.

[173] S. Salihoglu and J. Widom. GPS : A graph processing system. In International Conference

on Scientific and Statistical Database ManagementSSDBM, pages 1–31, 2013.

[174] S. Salihoglu and J. Widom. GPS: a graph processing system. In Conference on Scientific

and Statistical Database Management, SSDBM ’13, Baltimore, MD, USA, July 29 - 31,

2013, pages 22:1–22:12, 2013.

[175] M. Sarwat, S. Elnikety, Y. He, and M. F. Mokbel. Horton+: A distributed system for

processing declarative reachability queries over partitioned graphs. Proceedings of the

VLDB Endowment, 6(14):1918–1929, Sept. 2013.

[176] A. Schulz, A. Hadjakos, and H. Paulheim. A multi-indicator approach for geolocalization

of tweets. In Proceedings of the Seventh International Conference on Weblogs and Social

Media, ICWSM, pages 573–582, 2013.

[177] K. Semertzidis and E. Pitoura. Time traveling in graphs using a graph database. In

Proceedings of the Workshops of the EDBT/ICDT 2016 Joint Conference, EDBT/ICDT

Workshops, 2016.

[178] K. Semertzidis, E. Pitoura, and K. Lillis. Timereach: Historical reachability queries

on evolving graphs. In Proceedings of the 18th International Conference on Extending

Database Technology, EDBT, pages 121–132, 2015.

www.manaraa.com

BIBLIOGRAPHY 184

[179] D. Serrano, E. Stroulia, D. Barbosa, and V. Guana. SociQL: A query language for the

social Web. In E. Kranakis, editor, Advances in Network Analysis and its Applications,

chapter 17, pages 381–406. 2013.

[180] J. Shun, L. Dhulipala, and G. E. Blelloch. Smaller and faster: Parallel processing of

compressed graphs with ligra+. In 2015 Data Compression Conference, DCC, pages

403–412, 2015.

[181] A. Signorini, A. M. Segre, and P. M. Polgreen. The use of Twitter to track levels of

disease activity and public concern in the U.S. during the influenza A H1N1 pandemic.

PloS one, 6(5), Jan. 2011.

[182] J. Silva. A vocabulary of program slicing-based techniques. ACM Comput. Surv.,

44(3):12:1–12:41, June 2012.

[183] V. Singh, R. Gupta, and I. Neamtiu. MG++: memory graphs for analyzing dynamic data

structures. In 22nd IEEE International Conference on Software Analysis, Evolution, and

Reengineering, SANER, pages 291–300, 2015.

[184] I. Stanton and G. Kliot. Streaming graph partitioning for large distributed graphs. In

Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery

and data mining, pages 1222–1230, 2012.

[185] Y. Stavrakas and V. Plachouras. A platform for supporting data analytics on twitter

challenges and objectives. Intl. Workshop on Knowledge Extraction & Consolidation from

Social Media, (Ict 270239), 2013.

[186] D. Steidl, B. Hummel, and E. Juergens. Incremental origin analysis of source code files.

In 11th Working Conference on Mining Software Repositories, MSR, pages 42–51, 2014.

[187] M. Steinbauer and G. Anderst-Kotsis. Dynamograph: A distributed system for large-

scale, temporal graph processing, its implementation and first observations. In Proceedings

of the 25th International Conference on World Wide Web, WWW, Companion Volume,

pages 861–866, 2016.

[188] M. Steinbauer and G. Anderst-Kotsis. Dynamograph: extending the pregel paradigm for

large-scale temporal graph processing. IJGUC, 7(2):141–151, 2016.

www.manaraa.com

BIBLIOGRAPHY 185

[189] R. Stevens and C. D. Roover. Querying the history of software projects using

QWALKEKO. In 30th IEEE International Conference on Software Maintenance and

Evolution, pages 585–588, 2014.

[190] W. Sun, A. Fokoue, K. Srinivas, A. Kementsietsidis, G. Hu, and G. Xie. Sqlgraph: An

efficient relational-based property graph store. In Proceedings of the 2015 ACM SIGMOD

International Conference on Management of Data, SIGMOD ’15, pages 1887–1901. ACM,

2015.

[191] Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li. Efficient subgraph matching on billion

node graphs. Proceedings of the VLDB Endowment, 5(9):788–799, 2012.

[192] A. Tonon, G. Demartini, and P. Cudré-Mauroux. Combining inverted indices and struc-

tured search for ad-hoc object retrieval. In Proceedings of the 35th International ACM

SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’12,

pages 125–134, New York, NY, USA, 2012. ACM.

[193] TrendsMap, Realtime local twitter trends. http://trendsmap.com/.

[194] S. Trißl and U. Leser. Fast and practical indexing and querying of very large graphs.

In Proceedings of the ACM SIGMOD International Conference on Management of Data,

Beijing, China, June 12-14, 2007, pages 845–856, 2007.

[195] C. Tsourakakis, C. Gkantsidis, B. Radunovic, and M. Vojnovic. Fennel: Streaming graph

partitioning for massive scale graphs. In Proceedings of the 7th ACM international con-

ference on Web search and data mining, pages 333–342, 2014.

[196] A. Tumasjan, T. O. Sprenger, P. G. Sandner, and I. M. Welpe. Predicting elections with

twitter: What 140 characters reveal about political sentiment. In Proceedings of the Fourth

International Conference on Weblogs and Social Media, ICWSM 2010, Washington, DC,

USA, May 23-26, 2010, pages 178–185, 2010.

[197] Twitalyzer: Serious analytics for social business. http://twitalyzer.com.

[198] R.-G. Urma and A. Mycroft. Source-code queries with graph databases-with application

to programming language usage and evolution. Sci. Comput. Program., 97(P1):127–134,

2015.

http://trendsmap.com/
http://twitalyzer.com

www.manaraa.com

BIBLIOGRAPHY 186

[199] L. G. Valiant. A bridging model for parallel computation. Commun. ACM, 33(8):103–111,

Aug. 1990.

[200] C. Vicknair, M. Macias, Z. Zhao, X. Nan, Y. Chen, and D. Wilkins. A comparison of

a graph database and a relational database: A data provenance perspective. In Annual

Southeast Regional Conference, ACM SE ’10, pages 1–6, 2010.

[201] M. V. Vieira, B. M. Fonseca, R. Damazio, P. B. Golgher, D. de Castro Reis, and B. A.

Ribeiro-Neto. Efficient search ranking in social networks. In Proceedings of the Sixteenth

ACM Conference on Information and Knowledge Management, CIKM 2007, Lisbon, Por-

tugal, November 6-10, 2007, pages 563–572, 2007.

[202] Open link software. http://vos.openlinksw.com/owiki/wiki/VOS/.

[203] Inference in the semantic web. https://www.w3.org/standards/semanticweb/inference.

[204] H. Wang and C. C. Aggarwal. A survey of algorithms for keyword search on graph data.

In Managing and Mining Graph Data, pages 249–273. 2010.

[205] L. Wang, Y. Xiao, B. Shao, and H. Wang. How to partition a billion-node graph. In

IEEE 30th International Conference on Data Engineering, ICDE, 2014.

[206] D. Watts and S. Strogatz. Collective dynamics of ’small-world’ networks. Nature,

393(6684):440–442, June 1998.

[207] H. Wei, J. X. Yu, C. Lu, and X. Lin. Speedup graph processing by graph ordering. In

Proceedings of the 2016 International Conference on Management of Data, pages 1813–

1828. ACM, 2016.

[208] M. Weiser. Program slicing. IEEE Trans. Software Eng., 10(4):352–357, 1984.

[209] J. Weng, E.-p. Lim, and J. Jiang. TwitterRank : Finding topic-sensitive influential

twitterers. In Proceedings of the Third International Conference on Web Search and Web

Data Mining, WSDM, pages 261–270, 2010.

[210] J. S. White, J. N. Matthews, and J. L. Stacy. Coalmine: an experience in building a

system for social media analytics. In I. V. Ternovskiy and P. Chin, editors, Proceedings

of SPIE, volume 8408, 2012.

http://vos.openlinksw.com/owiki/wiki/VOS/
https://www.w3.org/standards/semanticweb/inference

www.manaraa.com

BIBLIOGRAPHY 187

[211] P. T. Wood. Query languages for graph databases. SIGMOD Record, 41(1):50–60, Apr.

2012.

[212] S. Wu, J. M. Hofman, W. A. Mason, and D. J. Watts. Who says what to whom on twitter.

In Proceedings of the 20th International Conference on World Wide Web, WWW, pages

705–714, Mar. 2011.

[213] R. S. Xin, D. Crankshaw, A. Dave, J. E. Gonzalez, M. J. Franklin, and I. Stoica. Graphx:

Unifying data-parallel and graph-parallel analytics. CoRR, abs/1402.2394, 2014.

[214] Z. Xing and E. Stroulia. Differencing logical uml models. Automated Software Eng.,

14(2):215–259, 2007.

[215] B. Xu, J. Qian, X. Zhang, Z. Wu, and L. Chen. A brief survey of program slicing.

SIGSOFT Softw. Eng. Notes, 30(2):1–36, 2005.

[216] Yahoo! Query Language guide on YDN. https://developer.yahoo.com/yql/.

[217] X. Yan, P. S. Yu, and J. Han. Graph indexing : A frequent structure-based approach.

In Proceedings of the ACM SIGMOD International Conference on Management of Data,

SIGMOD, pages 335–346, 2004.

[218] X. Yan, P. S. Yu, and J. Han. Substructure similarity search in graph databases. In Pro-

ceedings of the 2005 ACM SIGMOD International Conference on Management of Data,

SIGMOD ’05, pages 766–777, New York, NY, USA, 2005. ACM.

[219] J. Yang, J. J. McAuley, and J. Leskovec. Community detection in networks with node

attributes. CoRR, abs/1401.7267, 2014.

[220] W. Yang. Identifying syntactic differences between two programs. Softw., Pract. Exper.,

21(7):739–755, 1991.

[221] H. Yildirim, V. Chaoji, and M. J. Zaki. GRAIL: a scalable index for reachability queries

in very large graphs. Proceedings of the VLDB Endowment, 21(4):509–534, 2012.

[222] J. Yin, S. Karimi, B. Robinson, and M. Cameron. ESA: emergency situation awareness

via microbloggers. In 21st ACM International Conference on Information and Knowledge

Management,CIKM 12, pages 2701–2703, 2012.

https://developer.yahoo.com/yql/

www.manaraa.com

BIBLIOGRAPHY 188

[223] P. Yin, W. Lee, and K. C. K. Lee. On top-k social web search. In Proceedings of the 19th

ACM Conference on Information and Knowledge Management, CIKM 2010, Toronto,

Ontario, Canada, October 26-30,2010, pages 1313–1316, 2010.

[224] A.-J. N. Yzelman and R. H. Bisseling. A Cache-Oblivious Sparse Matrix–Vector Multi-

plication Scheme Based on the Hilbert Curve, pages 627–633. Springer Berlin Heidelberg,

2012.

[225] A. N. Yzelman and D. Roose. High-level strategies for parallel shared-memory sparse

matrix-vector multiplication. IEEE Trans. Parallel Distrib. Syst., 25(1):116–125, 2014.

[226] S. Zhang, S. Li, and J. Yang. Gaddi: Distance index based subgraph matching in biological

networks. In Proceedings of the 12th International Conference on Extending Database

Technology: Advances in Database Technology, EDBT, pages 192–203, New York, NY,

USA, 2009. ACM.

[227] Y. Zhang, V. Kiriansky, C. Mendis, M. Zaharia, and S. P. Amarasinghe. Optimizing

cache performance for graph analytics. CoRR, abs/1608.01362, 2016.

[228] P. Zhao and J. Han. On graph query optimization in large networks. Proceedings of the

VLDB Endowment, 3(1):340–351, 2010.

[229] Y. Zhou, H. Cheng, and J. X. Yu. Graph clustering based on structural/attribute simi-

larities. Proceedings of the VLDB Endowment, 2(1):718–729, 2009.

www.manaraa.com

Appendix A

List of Abbreviations

Abbreviation Description

ACID Atomicity, Consistency, Isolation, Durability

API Application programming interface

AST Abstract syntax tree

BSP Bulk synchronous parallel

CSR Compressed Sparse Row

GDBMS Graph Database Management Systems

IDE Integrated Development Environment

IR Information retrieval

JSON JavaScript Object Notation

JVM Java Virtual machine

KLOC Kilo lines of code

MLDM Machine learning data mining

MVCC Multi-version concurrency control

189

www.manaraa.com

APPENDIX A. LIST OF ABBREVIATIONS 190

Abbreviation Description

NER Named entity recognizers

NLP Natural language processing

NoSQL Not only SQL

OIC Oracle internal codebase

OLAP Online analytical processing

OLTP Online transactional processing

PDG Program dependency graph

POS Part-of-speech

RDF Resource description frameworks

SCM Software Configuration Management

SPARQL SPARQL Protocol and RDF Query Language

SQL Structured query language

URI Uniform resource identifier

	Declaration
	Acknowledgement
	Contents
	List of Figures
	List of Tables
	Abstract
	Introduction
	Graph Data Management Systems
	Motivation and Contributions
	Modeling large scale applications in a GDBMS
	Storage and indexing issues in GDBMS
	Query processing in GDBMS

	Publications
	Thesis Overview

	Background
	Preliminaries
	Graph Representation
	Real-world Graphs and Applications
	Graph Data Management Systems
	Property Graph Data Model
	Options for modeling graph data
	Relational model with SQL queries
	RDF model with SPARQL queries
	Native graph model with custom query languages

	Graph Database Systems
	Neo4j
	Sparksee
	Titan
	Graph database system summary

	Graph processing systems

	Summary

	Graph Database Systems for Microblogging Analytics
	Introduction
	Data Collection
	Data Management Frameworks
	Focused Crawlers
	Pre-processing and Information Extraction
	Generic Platforms
	Application-specific Platforms
	Support for Visualization Interfaces
	Discussion: Data Model and Storage Mechanisms

	Languages for Querying Tweets
	Generic Languages
	Query Languages for Social Networks
	Information Retrieval - Tweet Search
	Discussion: Data Model and Storage for the Languages

	Requirements of an Integrated Solution
	Focused crawler
	Pre-processor
	Data Model
	Query Language
	General Challenges in Data Management

	Graph Database Systems for Microblogging Queries
	Database Schema
	Graph Databases

	Data Ingestion and Query Processing
	Dataset and Pre-processing
	Data Ingestion
	Neo4j
	Sparksee

	Query Processing
	Basic Queries
	Advanced Queries
	Deriving Other Queries

	Discussion
	Efficiency of alternate solutions
	Overhead for aggregate operations
	Problems with the cold cache
	Processing keyword search on graphs

	Summary

	Evolving Dependency Graphs for Multi-versioned Codebases
	Introduction
	Chapter Organisation

	Frappé background
	Architecture
	Graph Model
	Code Comprehension Queries

	Related Work
	Evolving Graphs
	Industry Projects
	Source code analysis and other program meta-models
	Syntactic and Semantic Differencing

	Versioning Dependency graphs
	Potential solutions to versioning dependencies
	Autonomous storage
	Delta storage
	Use of an existing program meta-model
	Proposed unified model

	Preliminaries of the Unified model
	Queries in the Unified Model

	Node and Edge Resolutions
	Resolution Rules
	Resolutions in a single version

	Versioned graph construction
	Model Improvements

	Evaluation
	Datasets
	Resolution Evaluation
	Discussion

	Queries on Versioned Graphs
	Time-point queries
	Time-interval Queries

	Summary

	Edge Labeling Schemes for Graph Data
	Introduction
	Chapter Organisation

	Related Work
	Node arrangement
	Graph compression and Space filling curves
	Graph partitioning, Community detection and Clustering
	Sparksee

	Edge-labeling schemes
	Problem formulation
	Labeling schemes
	 Baselines for labeling
	 Proposed Method: GrdRandom
	 Proposed Method: FlipInOut

	Experimental Evaluation
	Experimental Setup
	Speedup of Queries
	 Friend-of-Friend (FoF) Queries
	 Shortest Path Queries
	 Edge-Property Queries
	Neighborhood Queries

	 Scalability
	Disk I/O Performance
	Varying Page Sizes
	Disk Storage Benefit

	Analytical Cost of Varying Depth Neighborhood Queries
	Balance of Labeling

	Application: Streaming Graph Partitioning
	Baseline Methods and Methodology
	Results

	Summary

	Social-Textual Query Processing on Graph Database Systems
	Introduction
	Chapter Organisation

	Related Work
	Social Graph Queries – Twitter and Facebook
	Keyword search on graphs
	Orthogonal work in multiple domains

	Problem Definition
	Baseline Algorithms
	Text First Algorithm
	Social First Algorithm
	Threshold Algorithm

	Proposed PART_TA algorithm
	Precomputation
	Query Processing algorithm
	Graph partitioning strategy

	Experiments
	Datasets
	Graph Database System
	Performance Evaluation
	Discussion

	Summary

	Conclusions and Future Directions
	Summary of Contributions
	Future Research Directions

	Bibliography
	List of Abbreviations

